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Summary 

An aerothermal study was performed in the 
Langley 8-Foot High-Temperature Tunnel at  a Mach 
number of 6.6 to define the pressures and heating 
rates on the surfaces between split elevons similar 
to those used on the Space Shuttle. A 1/3-scale 
model representing the Shuttle wing-elevon junction 
was extensively instrumented to measure the detailed 
pressure and heating-rate distributions within the 
chordwise gap between elevons and on the windward 
surfaces of the wing and elevons. Tests were per- 
formed with both laminar and turbulent boundary 
layers on the wing surface upstream of the elevons. 
The flow in the chordwise gap between the elevons 
was characterized by flow separation at the gap en- 
trance and flow reattachment at a depth inversely 
proportional to the gap width. The gap pressure and 
heating rate increased significantly with a decrease 
in elevon gap width, and maximum gap heating rate 
was proportional to the maximum gap pressure. Cor- 
relation of the present results indicates that the gap 
heating was directly proportional to the elevon wind- 
ward surface pressure and was not dependent upon 
whether the boundary layer on the windward elevon 
surface was laminar or turbulent. 

Introduction 

Maneuverable reentry vehicles, such as the Space 
Shuttle, require wing-elevon control surfaces that can 
tolerate the severe aerothermal loads of hypersonic 
flight. The Space Shuttle has split elevons on each 
wing as described in reference 1. The flow envi- 
ronment over the elevons is not amenable to ana- 
lytical prediction because of the inherent complexity 
produced by variable-deflection angles, shock inter- 
actions, flow leakage past hinge-cove seals, and cross- 
flow around lateral edges of the elevons. Thus far, 
the efforts by computational fluid analysts have not 
produced a flow model to handle the complex flow 
field entering and passing through the gap between 
elevons. For convenience, the primary design and 
correlation approach has been to relate gap heating 
to elevon windward-surface heating; however, for this 
approach, an unreasonable link is assumed between 
the boundary layers of the two surfaces because a 
new boundary layer is formed on the elevon sidewalls. 
The simplest flow model for the present problem is 
channel flow between the elevons with entrance con- 
ditions derived from local flow on the elevon wind- 
ward surface. For either the case of a simple channel 
flow model or a more complex computational flow 
model, experimental and flight data are required to 
validate the analysis. 

The split elevons of the Shuttle are separated by 
a stub which serves as a structural fairing and an 
end seal for the hinge cove. An early design in- 
cluded narrow chordwise gaps between the stub and 
each elevon, and the heating within these gaps was 
of great concern. The stub design was eventually 
changed to eliminate these gaps; however, an ex- 
perimental study (ref. 2) indicated that the magni- 
tude of the heating in these gaps was benign. As 
a result of the new stub design, the greatest con- 
cern was the heat load within the larger chordwise 
gap between the elevons. Based on the assumption 
that elevon sidewall heating would be about equal 
to elevon windward-surface heating, the original de- 
sign used the Shuttle silica-tile thermal protection 
system in the gap. However, late in the fabrica- 
tion process, thermal analysis based on small-scale, 
laminar-flow test results indicated that the area be- 
tween the elevons would encounter temperatures of 
3660'R (ref. 3); these temperatures were too great 
for the tiles to survive. This analysis used laminar 
data that indicated that sidewall heating could be as 
high as 1.36 times the windward-surface heating and 
extrapolated these results to include the turbulent 
portion of the trajectory in predicting temperatures 
above the design. Contrary to this conclusion, re- 
sults from reference 2 indicated a corresponding heat- 
ing ratio of about 0.36 for the turbulent condition. 
Conservatism led to installation of an ablative mate- 
rial on the elevon sidewalls, which was replaced after 
each of the first five flights. An assessment of the 
results of the first four flights revealed that the aero- 
thermal environment between the elevons was less 
severe than the conservative estimate; therefore, the 
original tile design was installed on one elevon side- 
wall (including instrumented tiles) for flight five. 
Since the elevon sidewall temperatures of flight five 
(ref. 4) were less than the tile design limit, the orig- 
inal tile design was reinstated for subsequent flights 
and the results were good except for localized damage 
that was probably due to gap-filler and tile irregular- 
ities. (See ref. 3.) 

Although the original tile design has survived 
each flight with only localized damage, the actual 
flow between the elevons is not known adequately 
to assess this damage or to improve the design. 
Therefore, the test model of reference 2 was mod- 
ified to approximate a 1/3-scale model of the full 
elevon at the stub and to include sufficient instru- 
mentation to provide detailed heating distributions 
on the elevon sidewalls. The elevon chordwise length 
was 24 in., and the gap width between elevons was 
varied from 1 to 3 in. The windward longitudinal 
edge of the elevons adjacent to the gap was replace- 
able to provide variation in edge radius along the 



chordwise-gap entrance. Tests were performed in the 
Langley 8-Foot High-Temperature Tunnel with both 
laminar and turbulent boundary layers on the wing 
section ahead of the elevons. These tests were made 
at a Mach number of 6.6, a unit Reynolds number 
range from 0.37 x lo6 to 1.46 x lo6, and a total 
temperature of about 3500'R. The model wing angle 
of attack was varied from 0' to loo, and the elevon 
deflection angles were varied from 0' to 20'. This 
paper presents the detailed pressure and heating dis- 
tributions on the windward surfaces of the wind and 
elevon and on the elevon sidewalls for the various 
test conditions and geometry variations. Also, lim- 
ited correlations of maximum elevon sidewall heating 
rate with windward elevon pressure are presented. 

Symbols 

CP 

L 

M 

NPr 

N R e  

NRU 

Nst 

P 

9 

4 
R 

specific heat at constant 
pressure, B tu/lbm- ' R 

elevon chord length, in. 

Mach number 

Prandtl number 

Reynolds number based on 
characteristic distance z from 
leading edge 

unit Reynolds number, 
per foot 

Stanton number 

pressure, psia 

dynamic presure, psi 

heat transfer rate, Btu/ft2-sec 

windward longitudinal edge 
radius of elevons adjacent to 
chordwise gap, in. 

temperature, OR 

time, sec 

velocity, ft/sec 

stub width, in. (fig. l(a))  

Cartesian coordinates, in. 

(fig. W) 

(fig. 1(4) 

Cartesian coordinate sys- 
tem for lower and upper 
elevons (figs. 3(b) and 3(c), 
respectively ) 

ff 

7 

s 

P 

P 
Subscripts: 

aw 

C 

e 

L 
e 
max 

t 
U 

W 
W 

00 

Superscript: 
* 

Abbreviations: 

BL 

PB 

PL 

PLS 

PS 
PT 
PU 

PUS 

PW 

QL 

wing angle of attack, deg 

ratio of specific heats 

elevon deflection angle, deg 
(fig. l(a));  velocity boundary- 
layer thickness, in. 

absolute viscosity, lbm/ft-sec 

density, lbm/ft3 

(fig- l(4) 

adiabatic wall 

combustor 

boundary-layer edge 

windward elevon surface 

lower elevon 

maximum in elevon chordwise 
gap 
total 

upper elevon 

wing surface 

wall 

test-chamber free stream 

Eckert's reference temperature 

boundary-layer rake (table I) 
elevon leeside and base pres- 
sure (table I) 

lower elevon windward pres- 
sure (table I) 

lower elevon sidewall pressure 
(table I) 

static pressure (table V) 
pitot pressure (table V) 

upper elevon windward pres- 
sure (table I) 

upper elevon sidewall pressure 
(table I) 

wing windward pressure 
(table I) 

lower elevon windward heating 
rate (table 11) 



lower elevon sidewall heating 
rate (table 11) 

ing rate (table 11) 

upper elevon sidewall heating 
rate (table 11) 

QW wing windward heating rate 
(table 11) 

QLS 

QU upper elevon windward heat- 

QUS 

Apparatus and Tests 

Model 
The wing-elevon model shown in figure 1 was 

tested in the Langley &Foot High-Temperature 
Tunnel (8' HTT). The model consisted of a wing sec- 
tion and two elevons separated by a stub. The wing 
windward surface was flat and the leeward surface 
was curved in a circular arc. Two solid brass lead- 
ing edges were used: one was blunt with a radius of 
0.38 in. to obtain a laminar boundary layer, and the 
other was sharp with flow trips to obtain a turbu- 
lent boundary layer. The flow trips consisted of a 
row of 0.19-in-diameter spheres spaced 0.75 in. apart 
and located 5 in. from the leading edge like those de- 
scribed in reference 5. The rest of the model was fab- 
ricated with 0.5-in-thick steel walls to provide struc- 
tural strength and heat-sink characteristics to ensure 
that thermal distortions would not occur during the 
10-sec aerothermal exposures. The wing section was 
52 in. wide, and the length from the leading edge 
to the elevon hinge was 79 in. The total width of 
the elevon section between elevon fences was 39 in., 
and the elevon fences extended 19 in. forward of the 
hinge axis. The elevons were designed to fit three 
different stub widths of 1 in., 2 in., and 3 in. by 
adding appropriate shim plates between the elevons 
and elevon fences when the thinner stubs were used. 
The upper and lower elevons were 18 in. wide and 
24 in. from the hinge axis to the trailing edge. The 
hinge axis was located 3 in. below the wing wind- 
ward surface. (See fig. l(c).) The elevon chordwise 
cross section was tapered to approximate the Shuttle 
elevons. The windward surface of the elevons was 
flat and was aligned with the wing at zero deflection 
angle, and the leeward surface was tapered 17.5' to a 
trailing-edge thickness of 1.7 in. With the 2-in. stub 
installed, the elevon configuration was approximately 
a 1/3-scale model of the Shuttle elevon configuration. 

Photographs of the model installed in the wind 
tunnel are presented in figure 2. The model was 
mounted vertically on the center diamond-shaped 
support, on which it was rotated to a predetermined 

angle of attack and fixed before each run. The upper 
elevon is removed in figure 2(b) to show the hinge- 
section interior. The stub and elevon. shim adjust- 
ments were made with the elevons removed. The 
hinge-section interior was sealed from the external 
flow with a tight metal-to-metal fit at the ends of 
the elevon and with silicone rubber seals between the 
elevon and the windward and leeward wing surfaces. 
The elevons were rotated individually and bolted to 
their respective fences at the predetermined test an- 
gles. More of the elevon and stub details are visible 
in figure 2(c), such as the %in. stub radius about the 
hinge axis and the replaceable edge strip along the 
elevon chordwise gap, which provides two edge radii 
of 0.0 and 0.25 in. 

Instrumentation 

The model was instrumented to determine the 
detailed pressure and heating-rate distributions on 
the elevon sidewalls that form the chordwise gap be- 
tween the elevons and on the windward wing and 
elevon surfaces. A total of 29 pressure orifices and 77 
Gardon heat-flux gages were installed on the model 
surfaces. The geometric coordinates of each instru- 
ment location are presented in tables I and 11. The 
two Cartesian coordinate systems used in tables I and 
I1 are illustrated in figure 1 for the overall model (un- 
primed coordinates) and in figure 3 for the elevons 
(primed coordinates). The unprimed coordinates 
(fig. l (a))  originate at the wing leading edge, the 
flat windward surface of the wing, and the horizontal 
centerline through the chordwise gap between 
elevons. The unprimed coordinates for the elevon 
instruments are based on a fixed elevon gap width 
W of 2 in. and an elevon deflection angle of 0'. The 
windward wing and elevon instrumentation, selected 
for longitudinal plots to be used later, are shown in 
figure 3(a) and include the wing centerline and the 
midspan of each elevon. The primed coordinates for 
the lower and upper elevons are illustrated in fig- 
ures 3(b) and 3(c), respectively. The primed coordi- 
nates originate at the elevon hinge axis, the elevon 
windward surfaces, and the gap edge with y' positive 
away from the horizontal centerline for each elevon. 
As shown in figure 3(b), the lower elevon was densely 
instrumented on the windward and sidewall surfaces 
with pressure orifices and heat-flux gages. Thirty-five 
heat-flux gages were located on the sidewall, primar- 
ily in rows normal to the windward surface at the 
same values of x' as the gages on the windward sur-. 
face. Minimal pressure orifices and heat gages were 
located on the upper elevon, as shown in figure 3(c). 
Elevon pressures were measured on the leeward sur- 
faces and trailing-edge base surfaces of both elevons. 
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The surface-pressure orifices were installed using 
stainless-steel tubes mounted through the model wall 
and flush with the outer surface. The tubes, 2 to 
4 ft long and 0.060 in. in diameter, were attached 
to individual electromechanical pressure transducers 
located inside the elevons and the wing section of the 
model. The Gardon heat-flux gages were the heat- 
sink type with a 0.005-in-thick chrome1 disk mounted 
flush with the model surface and bonded to a nickel 
body. The gage body was threaded and installed 
in the thick model walls as shown in figure 4(a). 
The gaps around the disks were minimized by the 
close fit between the gage shaft and the installation 
hole. Any surface recesses around the disk were filled 
with a ceramic compound to provide a flush surface 
installation. 

Boundary-layer instrumentation consisted of two 
fixed survey-rake locations ahead of the upper elevon 
as shown in figure 3(c). The pitot-pressure tubes 
were 72 in. from the wing leading edge, and the 
spanwise locations were 2 in. and 15 in. from the 

I model centerline. The installation details of the 
boundary-layer rake are presented in figure 4(b). 
The rake consisted of 14 pitot-pressure tubes and 
one static-pressure orifice 0.992 in. above the wing 
surface on the sidewall of the rake. The heights of 
the pitot tubes above the surface ranged up to 2.5 in. 
as indicated in the figure. The rakes were used to 
characterize the boundary layer ahead of the elevons 
for each test condition. 

Facility 
The Langley 8-Foot High-Temperature Tunnel 

(8' HTT), shown schematically in figure 5, is a large 
blowdown tunnel that simulates aerodynamic heat- 
ing and pressure loading for a nominal Mach num- 
ber of 7 at altitudes between 80000 and 120000 ft. 
The high energy needed for temperature simulation 
is obtained by burning a mixture of methane and air 
under pressure in the combustor and expanding the 
products of combustion through a conical-contoured 
nozzle into the open-jet test chamber. The flow en- 
ters a supersonic diffuser where it is pumped by an 
air ejector through a mixing tube and exhausted to 
the atmosphere through a subsonic diffuser. The 
tunnel operates at total temperatures from 2400'R 
to 3600°R, free-stream dynamic pressures from 250 
to 1800 psf, and free-stream unit Reynolds numbers 
from 0.3 x lo6 to 2.2 x lo6 per foot, and it has a 
maximum run time of 120 sec. 

The model is stored in the pod below the test 
stream to protect it from adverse tunnel start-up 
loads. Once the desired flow conditions are estab- 
lished, the model is inserted into the test stream on 
a hydraulically actuated elevator. Insertion time is 

typically 1.5 sec. More detailed information about 
the tunnel can be found in reference 5. 

Test Conditions and Procedure 

The model was tested with the various elevon 
geometric configurations listed in table 111. Two lead- 
ing edges were used to obtain laminar and turbu- 
lent boundary layers on the wing surface ahead of 
the elevons. In general, the blunt leading edge pro- 
vides laminar flow for small angles of attack and low 
free-stream unit Reynolds numbers, but the blunt- 
leading-edge bow shock produces an entropy layer 
in the flow field on the wing surface with a reduced 
Mach number at the edge of the boundary layer. The 
entropy layer complicates the comparison of the tur- 
bulent flow produced with the sharp leading edge 
with an attached oblique shock and no entropy layer. 
Flow trips were used with the sharp leading edge to 
ensure an even transition across the wing to a tur- 
bulent boundary layer. For each leading-edge con- 
dition, the wing angle of attack a (fig. 1) and the 
elevon deflection angle S (fig. 1) were varied to char- 
acterize the effects on the gap flow between the split 
elevons. Also, the gap width between the elevons 
and the elevon corner radius at the gap entrance was 
varied for CY = 5' and 6 = 10'. Additional char- 
acterizations were made for the sharp leading edge, 
including a variation in free-stream Reynolds number 
and a variation of the upper elevon deflection angle 
while the lower elevon deflection angle was k e d  at 
loo. 

Flow parameters for each test are presented in 
table IV. In table IV(a), the total temperature and 
combustor pressure are listed along with selected 
free-stream flow properties calculated from tunnel 
surveys and from gas properties presented in ref- 
erence 6. The model was tested primarily at a 
nominal total temperature and pressure of 330O0R 
and 350 psia, respectively, to produce a free-stream 
Mach number of 6.6 and unit Reynolds number of 
0.37 x lo6 per foot. Tests 22, 23, and 24 were 
made at  off-nominal conditions with increased com- 
bustor pressures to provide Reynolds numbers of 
0.588 x lo6, 0.866 x lo6, and 1.46 x lo6 per foot. 
Since the model temperature was maintained at the 
ambient condition prior to model insertion into the 
test stream, the ratio of wall temperature to total 
temperature was about 0.16 for this study. Pertinent 
calculated wing and elevon surface flow conditions 
are listed in tables IV(b) and IV(c), respectively, 
including Calculated surface pressures and aerody- 
namic heating parameters. The wing and elevon sur- 
face pressures were determined from oblique shock 
relationships (ref. 7) and from the local ratio of 
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I specific heats 7 for the combustion-products test 
medium (ref. 6). 

Data Reduction and Analysis 

Model pressures, heating rates, and tunnel data 
were recorded on magnetic tape at a rate of 
20 samples per sec using the on-site 8' HTT com- 
puter. The magnetic tapes were then sent to the 
Langley Central Digital Data Recording Subsystem 
for processing of the information to engineering units. 
Model pressure values were selected from the pres- 
sure histories after steady pressures were established 
on the surface and in the orifice tubes connecting the 
transducers. The pressure gages and the data record- 
ing system have been shown to operate with an error 
of less than 0.25  percent of full-scale range. The ac- 
tual absolute error when the gage is operating at the 
bottom of its scale can be intolerable unless the out- 
put is adjusted for the lower range pressures. This 
was conveniently done in the present test by adjust- 
ing all model gages, prior to model injection when all 
pressure orifices are subjected to the same low pres- 
sure, to match a reference precision gage in the test 
chamber outside the flow adjacent to the model. As a 
result, the error is limited to the effects of gage non- 
linearity for the range between the reference and test 
pressures, and the maximum absolute error is less 
than 0.5 percent. The same approach was used with 
the boundary-layer probes; both static- and pitot- 
pressure measurements, with their respective errors, 
produce a possible error in Mach number of less than 
1.5 percent. 

The heating rates were selected from the data 
after the model reached the centerline of the tunnel 
at the same time the pressure measurements were 
selected. The model-surface temperature rise was 
negligible, because the model structure was designed 
with large heat-sink capacity. Since the temperature 
rise was less than 50"R and the local adiabatic wall 
temperature was over 3000°R, the heating rates were 
not corrected for surface temperature rise. The heat- 
sink Gardon gage has proven to be durable and 
consistent in its signal repeatability for the severe 
aerothermal environment of the 8' HTT. The gage 
body was threaded, as shown in figure 4(a), for 
installation adjustment flush with the outer surface 
of the model. However, the outer 0.125 in. of the 
gage was machined down to 0.248 in. in diameter 
for a close fit with the instrument hole in the model 
outer surface. Also, any recesses around the gage 
penetrations were filled with ceramic material to 
obtain a flush surface installation. The primary 
source of Gardon gage error is in the calibration 
method. The gage calibration difficulties are inherent 
because the calibration facility uses a radiant heat 

source which is subject to errors in the reference gage 
and to possible inconsistencies in the special surface 
coatings used to regulate radiant absorptivity. These 
gages, which have multiple calibration histories, have 
been analyzed, and the total error band based on 
the calibration repeatability was f 7  percent. This 
is within the scatter range of the present data, and 
the best indication of the overall accuracy of these 
Gardon gages is from the wing heating rates of the 
present study, where the flow is known to be either 
laminar or turbulent. 

The experimental heating-rate data of this study 
are converted to Stanton number based on the free- 
stream flow conditions given in table IV(a). Stanton 
number is defined by the following expression: 

where Tt and (pVc), are given in table IV(a). 
The theoretical flat-plate heating rates were obtained 
from the following equations in reference 8 for lami- 
nar and turbulent boundary layers: 

N& = (0 .332)  ( N&.)-2/3 (N;,) -ll2 

The asterisk signifies that the gas properties were 
evaluated at  Eckert's reference temperature T* 
where 

T* = (0 .22)Taw + (0 .28)Te + (0 .50)Tw (4) 

The adiabatic wall temperature Taw is calculated 
with the following equation: 

Taw = T e  + (Tt - Te,(N;J (5) 

where P is 1 / 2  or 1 / 3  for laminar or turbulent 
boundary-layer flow, respectively. For these 
relationships, the surface heating rate is related to 
the reference-temperature Stanton numbers by the 
equation 

N& = i / ( L J  - TW)(PVC)* (6) 

Values for Taw, T*, and (pVc)* based on calculated 
local pressures for the wing and elevon surfaces are 
given in tables IV(b) and IV(c), respectively. Also, 
the unit Reynolds number (pV/p)* listed in these 
tables was used to calculate local N;, values ,as 
follows: 

These relationships were used to compare the present 
experimental results with analytical predictions. 

N;e = (PV/P)*Z (7) 
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I The boundary-layer Mach number profiles were 
obtained from the measured pitot and static pres- 
sures from the fixed rakes upstream of the elevon gap. 
The Mach number was calculated from the ratio of 
static pressure to pitot pressure using the Rayleigh 
pitot formula (ref. 7) and assuming an inviscid, calor- 
ically perfect gas. The analytical procedures for the 
present study were the same as those used in ref- 
erence 9 which were applied to a similar configura- 
tion on a flat plate with the same two leading-edge 
conditions. In reference 10, the boundary-layer code 
from reference 11 predicted the laminar and turbu- 
lent Mach number profile for the blunt leading edge, 
but the code underpredicted the turbulent boundary- 
layer thickness for the sharp leading edge. The devi- 
ation of the predicted boundary-layer thickness from 
the experimental results increased with distance from 
the leading edge of the model. (See ref. 9.) There- 
fore, for the present test, the more difficult boundary- 
layer condition of the blunt-leading-edge configu- 
ration was predicted using reference 11, and the 
turbulent boundary layer for the sharp leading edge 
was predicted by the procedures presented in refer- 
ence 9. The turbulent boundary-layer thickness was 
determined by the empirical relation (from ref. 12) 

-115 S/x x 0.37NR, 

The predicted turbulent Mach number profile was 
obtained using the classical 1/7-power-law flat-plate 
velocity profile given as 

(9) 

in reference 13, and the Crocco relationship between 
velocity and temperature is expressed as 

in reference 14. From equations (9) and (10) and 
from basic isentropic relationships, the Mach number 
can then be calculated using the expression 

where 
( z / S ) 2 / 7  

A =  Tt /Tt ,e 

The total temperature variation in the boundary 

layer is expressed in terms of known variables as 

Results and Discussion 
The primary focus of the present study is to de- 

fine sidewall pressure and heating-rate distributions 
in the chordwise gap between elevons for both lami- 
nar and turbulent boundary-layer flow on the wind- 
ward surfaces of the wing and elevon. Therefore, 
typical boundary-layer Mach number profiles are pre- 
sented for one longitudinal wing station just ahead 
of the elevons to further characterize the external 
boundary-layer flow conditions. Also, detailed pres- 
sure and heating-rate distributions for the windward 
surfaces of the model are presented to indicate the 
characteristics of both types of flow. Theoretical pre- 
dictions of the external flow effects are presented to 
verify the general flow conditions of the windward 
surfaces. Next, the elevon gap-pressure and heating- 
rate distributions are presented for the various wing 
and elevon angles. Some empirical relationships are 
then given to suggest what parameters are affecting 
the gap flow and how the experimental data of the 
present study might be extrapolated to flight condi- 
tions. Finally, limited surface pressure and surface 
heating-rate comparisons are presented to indicate 
the effects of the variations of gap width, elevon cor- 
ner radius, Reynolds number, and differential elevon 
deflection angles. 

The results of this study consist of model pressure 
and model heating rates. The model surface and 
boundary-layer rake pressures, listed in table V, are 
normalized by the free-stream static pressure given in 
table IV(a). The heating-rate data are presented in 
table VI as Stanton numbers based on free-stream 
total temperature and on (pVc), which are also 
given in table IV(a). 

Wing Boundary-Layer Profiles 

Mach number profiles obtained from the pitot- 
pressure rake were used to characterize the 
boundary-layer flow on the wing section of the model 
upstream of the elevon gap. The static and pitot 
pressures are presented in table V. The profile was 
72 in. from the leading edge and 7 in. upstream of the 
elevon hinge axis. The local measured static pressure 
on the rake was used for the Mach number calcula- 
tion for all runs except those affected by flow separa- 
tion upstream of the deflected elevons. The equiva- 
lent attached boundary-layer-flow static pressure was 
used for the calculation when separation occurred. 
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I The experimental profiles presented were obtained 
' from the probe (BL1) located 15 in. from the model 
l centerline, as indicated in table I. Probe BL2, located 

2 in. from the centerline, was.also used for one test 
(test l), and the profiles from the two probes agreed. 
Probe BL2 was not installed for the remaining tests 
because its presence, directly upstream of the chord- 
wise gap between the elevons, affected flow in the 
gap. 

Blunt leading edge without flow trips. The exper- 
imental Mach number profiles for the blunt-leading- 
edge flow condition with various wing and elevon an- 
gles are presented in figure 6. The present results 
agree with the laminar boundary-layer predictions 
of reference 11 and extend beyond the boundary- 
layer edge into the entropy-gradient region that is 
produced by the curved bow shock associated with 
the blunt leading edge. Most of the profiles were 
not affected by the elevon deflections, since the rake 
was 7 in. upstream of the elevons. However, the 
flow separation did affect the profile for 6 = 20' 
in figure 6(a) with greatly reduced Mach numbers 
near the wing surface. At Q = 10' (fig. 6(c)), the 
laminar theory did not agree as well with the data 
because of boundary-layer transition, which was ex- 
pected for the larger angles of attack. As shown in 
reference 10, the turbulent Mach number profile is 
similar to and undistinguishable from the measured 
entropy-layer profile. Therefore, the onset of transi- 
tion would cause only slight variations in the profile. 
Overall, the flow on the wing for CY = 0' and 5' pro- 
duces laminar flow, and significant flow separation 
occurs only at the larger elevon deflection angles. 

Sharp leading edge with flow trips. The corre- 
sponding Mach number profiles for the sharp lead- 
ing edge with flow trips are presented in figure 7 for 
Q = O', 5', and 10'. In general, the experimen- 
tal results were not compared with the turbulent 
predictions of reference 11 because that approach 
greatly underpredicts the boundary-layer thickness 
for the present model (ref. 9). Therefore, the tur- 
bulent boundary-layer thickness was predicted using 
equation (8), and the Mach number profile was pre- 
dicted using equation (11). For CY = 0' (fig. 7(a)), the 
Mach number profile is fuller than the turbulent pre- 
diction, which is consistent with a less developed tur- 
bulent or transitional boundary layer. (See ref. 14.) 
Also, the experimental results fall between the turbu- 
lent prediction from equation (11) and laminar pre- 
dictions of reference 11 to indicate transitional flow. 
The effort to trip the flow was successful for Q = 
5' and lo', where both the boundary-layer thickness 
and Mach number profile were adequately predicted 

by equation (11). Also, there was no indication of 
flow separation resulting from elevon deflections. 

Windward-Surface-Pressure and Heating-Rate 
Distributions 
The windward surfaces of the wing and elevon 

were sufficiently instrumented to characterize the ex- 
ternal boundary-layer flow on the wing and elevon. 
The wing centerline and elevon midspan instrumen- 
tation (fig. 3(a)), was selected for longitudinal dis- 
tribution plots. The experimental pressure and 
heating-rate distributions are compared with the- 
oretical predictions to establish that data magni- 
tudes and trends are correct. These comparisons 
also indicate the locations of laminar, transitional, 
and turbulent flow regions and the locations of flow 
separation regions. For each longitudinal distribu- 
tion, corresponding lateral pressure and heating-rate 
distributions at the elevon midchord location are 
presented for each test condition. 

Blunt leading edge without flow trips. The 
longitudinal and lateral pressure and heating-rate 
distributions are presented in figure 8 for the blunt 
leading-edge conditions at angles of attack of O', 
5', and 10' for elevon deflection angles of O', 5', 
lo', and 20'. For Q = 0' and 6 = 0' (fig. 8(a)), 
the longitudinal pressure distribution beyond about 
x = 31.5 in. was constant and agreed with the inviscid 
predictions of the oblique-shock relations given in 
reference 7. At z = 13.5 in., the pressure was 
significantly higher, and the Blast-Wave Theory of 
reference 15 predicted the increased pressure caused 
by the curved bow shock of the blunt leading edge. 
The pressure increase ahead of the elevon for elevon 
deflections of 10' and 20' indicates flow separation 
which was noted previously by the boundary-layer 
profiles for 6 = 20' (fig. 6(a)). The corresponding 
elevon pressure also increased above the predicted 
pressure for no entropy layer and no flow separation. 

The corresponding longitudinal heating-rate dis- 
tribution on the wing agreed with the laminar predic- 
tion from equation (2). For 6 = lo', the heating de- 
creased in the separation region consistent with clas- 
sic laminar-flow separation. However, for 6 = 20°, 
the heating in the separated flow region increased; 
this increase indicated the same transitional flow be- 
havior observed under similar conditions in refer- 
ence 16. The heating rate at  the trailing edge of 
the elevon at 6 = 20' increased above the predicted 
heating for attached flow; this increase' is consistent 
with the pressure data, because the flow is more effec- 
tively compressed when separation occurs. The two 
predicted heating-rate curves for each elevon angle 
were obtained by assuming two different character- 
istic lengths with virtual origins at the wing leading 
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edge (x = 0) and at the elevon hinge axis (x' = 0). 
The experimental results should fall between these 
assumptions, because using x assumes a continuous 
boundary-layer growth from the wing to the elevon, 
and using X I  assumes a boundary-layer discontinuity 
at the hinge axis with a new start from a boundary- 
layer thickness of zero. 

Apparently, the results for a = 0' (fig. 8(a)) were 
further complicated by flow blockage of model free- 
stream flow interference, which produced increased 
model base pressures. For the blunt-leading-edge 
tests, the elevon base pressure (PB79 and PB80 in 
table V) was significantly higher than that for the 
sharp-leading-edge tests. For a = 0' with the blunt 
leading edge, the flow blockage was so severe that 
the windward elevon surface pressures and heating 
rates were affected. The longitudinal pressure and 
heating rate (fig. 8(a)) increased toward the trailing 
edge of the elevon, and the lateral pressure and 
heating rate (fig. 8(a)) increased with distance from 
the elevon gap edge; this increase indicated that 
a conical compression shock impinged on the outer 
corners of the elevon trailing edge. Although much 
of the external flow at a = 0' was laminar, the flow 
blockage effects on the elevon gap data eliminated 
this test condition from further comparisons. 

Although the elevon base pressure was also el- 
evated for the larger angles of attack, the wind- 
ward pressure and heating-rate distributions on the 
elevons did not indicate significant flow blockage ef- 
fects. For a = 5' (fig.' 8(b)), the longitudinal- 
pressure and heating-rate distributions agreed with 
inviscid and laminar predictions, respectively; the 
elevon pressure data and heating-rate data approach 
the predicted levels for turbulent flow as the elevon 
deflections increase. For 6 = lo', laminar-flow sep- 
aration occurred ahead of the elevon, and caused 
slightly increased pressure and decreased heating. 
The pressure on the elevon did not increase above 
the predicted level for inviscid flow. Also, the elevon 
heating approached the predicted turbulent heating 
level for 6 = 10'. The results for a = 10' (fig. 8(c)) 
were similar, but flow transition occurred on the wing 
at about x = 50 in., which caused increased heating 
ahead of the elevon. Flow transition was also in- 
dicated in the boundary-layer profile in figure 6(c). 
The lateral pressure and heating-rate distributions 
for a = 5' and a = 10' were relatively flat and de- 
creased toward the elevon edge at the chordwise gap. 

The longitudinal heating-rate distributions on the 
wing and elevon with 6 = 0' are correlated in 
figure 9 in the form of Stanton number and Reynolds 
number based on Eckert 's reference temperature and 
are compared with the laminar and turbulent theory 
of equations (2) and (3), respectively. Clearly, the 

desired laminar flow does not occur at the elevons 
for a greater than 5'. Also, when the elevons were 
deflected, transition occurred on the elevon surface. 
Therefore, the 5' angle-of-attack condition was the 
best for laminar flow, but laminar flow over the 
entire model length was achieved only with an elevon 
deflection angle of 0'. 

Sharp leading edge with flow trips. The sharp- 
leading-edge configuration with flow trips was used 
to obtain turbulent boundary-layer-flow conditions. 
The longitudinal and lateral pressure and heating- 
rate distributions are presented in figure 10 for a = 
O', 5', and 10' for elevon deflection angles of O', 
5', and 10'. The pressure data agreed with the 
predicted inviscid levels (ref. 7) on the wing and 
elevons, which indicated negligible flow separation 
and flow blockage effects. For a = 0' (fig. lO(a)), the 
flow trips were ineffective in providing fully turbulent 
flow at the elevons, and transition began at about 
x = 43.5 in. The transitional flow was also indicated 
in the boundary-layer profile in figure 7(a) discussed 
previously. Fully turbulent flow was obtained on 
the wing at x = 40 in. and 13 in. for a = 5' and 
lo', respectively. (See figs. 10(b) and lO(c).) The 
experimental heating results for the elevon surfaces 
for all deflection angles agreed with the predicted 
levels. Also, the lateral distributions were relatively 
flat, and there was some decrease near the elevon 
edge at the chordwise gap. 

The longitudinal heating-rate results for the sharp 
leading edge on the wing and elevon at 6 = 0' are 
correlated in figure 11 and indicate the relative effec- 
tiveness of the flow trips at the various angles of at- 
tack. Although both 5' and 10' angles of attack were 
sufficient to produce turbulent boundary layer at  the 
elevons, a = 5' was chosen because it was consis- 
tent with the laminar condition discussed previously. 
Therefore, all remaining parametric comparisons are 
made for a = 5' with various elevon deflection 
angles. 

Elevon Gap Pressures and Heating Rates 

Blunt leading edge without flow trips. The 
lateral pressure and heating-rate distributions at the 
elevon midchord location for both windward and 
gap surfaces are presented in figure 12 for a = 5'. 
The normalized surface pressures and heating rates 
are plotted against the distance from the elevon 
edge y' for the windward surface and against the 
normal depth into the chordwise gap z' for the elevon 
sidewall. The pressures are normalized by values 
from PL49 at yl  = 8.05 in., and the heating rates are 
normalized by values from QL49 at  yl  = 9.05 in. The 
inset illustrates the locations on the windward and 
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sidewall elevon surfaces included in these comparison 
plots. 

The purpose of this plot (fig. 12) is to characterize 
the lateral surface pressure and heating-rate distri- 
butions around the elevon edge and into the chord- 
wise gap with respect to the windward reference val- 
ues. The windward-pressure data and corresponding 
heating-rate data on the elevon were previously pre- 
sented in figure 8(b). The gap pressures and heating 
rates typically increased with distance z' into the gap 
to a maximum and then decreased. The normaliza- 
tion of the gap pressure distributions for the various 
elevon deflection angles in figure 12 converges at a 
maximum of about p / p ~  = 0.23. However, the cor- 
responding normalized heating-rate distributions did 
not correlate, and theammimum values of q / q ~  de- 
creased from 1.1 to 0.28 with an increase in 6 from 
0' to 10'. The original intent was to characterize 
gap flow effects for laminar boundary layers on the 
windward surfaces of the wing and elevons, but as 
shown in figure 8(b), the elevon windward flow varied 
from laminar to turbulent as 6 increased from 0' to 
10'. For the only laminar case in figure 12, the max- 
imum gap heating was at about the same level as the 
heating on the elevon windward surface, which was 
expected in the original Shuttle design. At 6 = lo', 
where the normalizing value of q~ was turbulent, the 
maximum value of q / q ~  was reduced to the level of 
previous turbulent results in reference 2. 

In figure 13, the normalized gap heating distri- 
butions are presented for each of the fire chordwise 
stations as shown on the inset. The gap heating 
at each station was normalized by the correspond- 
ing windward elevon value at the midspan location. 
Generally, the data trends from x' = 8 in. to 20 in. 
were similar to those shown in figure 12 and indi- 
cate the range of an established characteristic gap 
flow. As indicated in figure 14, the maximum pres- 
sures and heating rates generally increased as a func- 
tion of x' /L .  The value of q m , / q ~  for the lami- 
nar case (6 = 0') increased to 1.3 near the trailing 
edge (x' /L = 0.83), which agrees with the 1.36 value 
(discussed previously and taken from ref. 3) from 
the small-scale laminar tests made prior to the first 
Shuttle flight. 

i 1 

1 

Sharp leading edge withflow trips. The lateral pres- 
sure and heating-rate distributions across the wind- 
ward elevon surface and into the gap at  the midchord 
location are presented in figure 15. The windward- 
surface boundary layers were turbulent for all elevon 
deflection angles as shown in figure 10(b). Pressure 
and heating-rate trends with z' for the sharp-leading- 
edge flow condition were similar to those previously 
discussed for the blunt-leading-edge flow condition. 

(Compare fig. 15 with fig. 12 for 6 = lo'.) In fig- 
ure 15, the normalized pressures and heating rates 
at the midchord location for 6 = 0' are greater than 
those for 6 = 5' and lo', which have approximately 
the same values. The increased pressure and heating 
rate are probably coupled at  6 = O', but the cause 
is unknown. Normalized heating-rate distributions 
at the various elevon stations are presented in fig- 
ure 16. In the forward portion of the elevon gap, the 
heating profiles for 6 = 5' and 10' tend to group 
together; but at x' = 20 in., the profiles for 6 = 0' 
and 10' seem to agree. This variation suggests that 
the complex flow pattern in the elevon gap was sen- 
sitive to elevon deflection angle. Generally, the pro- 
files of figure 16 show increasing gap heating rates 
with increasing x' toward the elevon trailing edge. 
Plots of pm,/pL and qma/QL as a function of x'/L 
are presented in figure 17. These trends, increasing 
gap pressures and heating rates with x'/L, are sim- 
ilar to the blunt-leading-edge results for 6 = 10' in 
figure 14. 

Maximum gap heating correlations. In the previ- 
ous discussion, the maximum normalized gap heating 
was shown to vary with the corresponding normalized 
gap pressure. The maximum gap heating is plotted 
as a function of maximum pressure in figure 18 for 
the turbulent test results to show this variation. This 
plot shows a definite trend, but there is some data 
scatter, which probably indicates a lack of precision 
in determining maximum values at the various longi- 
tudinal stations because the gap pressure data were 
limited at some stations to a single value. However, 
a correlation shows that the maximum gap heating is 
a logarithmic function of the corresponding gap pres- 
sure. The correlation plot in figure 18 is based on the 
data obtained with the sharp wing leading edge and 
a gap width of 2 in. Also, the data cover the entire 
range of 6 tested for (Y = 5'and 10'. The hand curve 
fit for the results is as follows: 

This correlation is important to the overall under- 
standing of the gap flow but has limited value in pre- 
dicting aerothermal loads for a given flight condition 
unless pm, can be determined. Actually, a corre- 
lation of gap pressure and heating with free-stream 
parameters is more desirable for predicting flight 
conditions. 

The basic need for a suitable design criteria to 
predict the aerothermal loads in the chordwise gap 
between elevons was discussed previously. The origi- 
nal design parameter of q m a / q L  = 1 was increased to 
1.36, based on small-scale laminar tests of the Shut- 
tle orbiter. The Shuttle elevon thermal protection 
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system (TPS) was overdesigned when the same value 
was used for the turbulent flight condition. (See 
ref. 3.) Because the turbulent test results of refer- 
ence 2 indicated that &,/ill was much less than 
1, the present study was designed to compare lam- 
inar and turbulent results directly. In the present 
study, a laminar boundary layer was obtained on the 
wing, but not on the deflected elevon. Therefore, it 
was impossible to compare a complete set of lami- 
nar external flow data with turbulent flow data; but 
the laminar-transitional data is compared with the 
turbulent flow data in figure 19 to provide a limited 
comparison. 

In figure 19(a), the maximum gap heating at 
the midchord position normalized to the windward- 
surface elevon heating ( q , , / q ~ )  is plotted against 
the corresponding windward-surface elevon pressure 
for both blunt and sharp wing leading edges. These 
comparisons represent laminar-transitional and tur- 
bulent cases, respectively. Wing angles of attack of 
5’ and 10’ and all the elevon deflection angles are in- 
cluded for a fixed gap width of 2 in. and sharp elevon 
edges. The reference values of &,/qL = 1.36 from 
the previous laminar studies and the present turbu- 
lent level of q,,/q~ = 0.25 are given as upper and 
lower boundaries. In the present correlation, qm, is 
related to values of q l  and p ~ ,  because these quan- 
tities can be calculated for the various flight condi- 
tions. As p~ increased, q m a x / q ~  for both blunt and 
sharp leading edges converged at the 0.25 level where 
the local elevon windward-surface flow was known to 
be turbulent. Thus, the present turbulent level was 
established for the gap width of 2 in. At the lower 
elevon pressures, the qm,/QL values show more scat- 
ter; but the laminar-transitional values for the blunt 
leading edge (circular symbols) approach the indi- 
cated reference laminar boundary. In fact, the data 

~ 

point nearest the laminar level corresponded to the 
test condition closest to laminar flow with the wing 
angle of attack at 5’ and no elevon deflection. (See 
fig. 8(b).) Although a complete set of laminar data 
was not obtained, the present data suggest different 
qm,/qr, Shuttle design values for laminar and turbu- 
lent elevon flow. Actually, a more important conclu- 
sion is that the maximum gap heating is independent 
of the external boundary-layer condition. 

A similar comparison is presented in figure 19(b) 
using the same data values, but here the dimensional 
quantity of q,, is plotted against p ~ .  For the fixed 
gap width, the maximum gap heating was directly 
proportional to the elevon windward-surface pres- 
sure, which is independent of elevon boundary-layer 
condition. The curve through the sharp-leading-edge 
data (square symbols) is hand-fitted with a logarith- 
mic slope of 0.8, this slope suggests that there is tur- 

bulent gap flow between elevons. Some of the blunt- 
leading-edge data (circular symbols) were close to the 
solid curve at pressures above 0.4 psia, but deviated 
below the curve with decreasing pressure. The log- 
arithmic slope of the blunt-leading-edge data is 1.0, 
which indicates transitional gap flow. Although the 
external boundary-layer condition does not directly 
affect the gap heating, the gap heating is dependent 
upon whether the gap flow between the elevons is 
laminar, transitional, or turbulent. 

Effects of Chordwise Gap Width and 
Gap-Entrance-Edge Radius 

The previous elevon gap pressure and heating- 
rate data have been presented only for a gap width 
W of 2 in. and with sharp gap-entrance edges. Spe- 
cial tests were made with W = 1 in. and 3 in. to 
determine the effect of gap width, and correspond- 
ing tests were made at the same gap widths with a 
cylindrical gap-entrance edge of 0.25-in. radius. The 
results are presented in figure 20 in similar form to 
those previously discussed. These results are for the 
turbulent flow case for a and 6 values of 5 O  and loo, 
respectively. The gap width and edge radius varia- 
tions do not affect the external flow as indicated in 
the elevon windward-pressure and heating-rate dis- 
tributions shown in figure 20. However, the gap 
pressure and heating distributions are significantly 
affected by the gap width where the pressure and 
heating near the gap entrance (2’ M 0.5) varied in- 
versely with gap width. Generally, the depths into 
the gap where the maximum pressure and heating 
rate occurred varied inversely with the gap width. 
As the gap width is decreased by a factor of 3 in 
figure 20(a), the pressure and corresponding heating 
near the gap entrance increases by a factor of about 
4. Similarly, for the entrance-edge radius of 0.25 in., 
the gap-entrance pressure and heating increased by 
about a factor of 3. The effect of gap-edge radius on 
the pressure and heating was small and limited to the 
gap-entrance region (z’ < 2 in.). Further comparison 
of these same tests (fig. 21) shows the gap heating dis- 
tributions at the five longitudinal stations. The com- 
parison of figures 21(a) and 21(b) again shows only 
minor differences in gap heating between the sharp 
and cylindrical edge radii. Overall, the gap width 
had the more obvious effect on the gap flow charac- 
teristics at the various stations and caused the peak 
heating to occur closer to the gap entrance (2’ = 0) 
as the width was decreased. 

Normalized maximum gap pressures and heating 
rates for the various gap widths and the edge radii 
are presented in figure 22 as a function of the lon- 
gitudinal distance from the elevon hinge location. 
This figure summarizes the results from figures 20 
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1 and 21, where the gap flow was primarily affected 
by the gap width. In general, the data trends of fig- 
ure 22 show clearly that the maximum gap heating 
increases directly with maximum gap pressure for the 
entire chordwise gap length for each of the gap widths 
presented. In fact, the direct relationship between 
gap pressure and heating is shown by the correlation 
plot presented in figure 23. Although the gap-flow 
characteristics varied for the various gap widths, the 
same correlation curve, from figure 18, fits the data 
trend. In figure 24, the maximum gap heating vari- 
ation with gap width for the present study is com- 
pared with previous results of reference 2, which had 
a much smaller range of gap width. The model geom- 
etry of reference 2 differed from the present model in 
that the elevon length was only 18 in. and the elevons 
were not tapered but had a trailing-edge thickness of 
12 in. Another difference was that the model of refer- 
ence 2 did not have a constant chordwise gap width, 
because the forward portion of the gap ( z ' /L  < 0.3) 
was 1 in. less than the downstream portion where the 
reference data were obtained. However, both sets of 
data at x'/L = 0.67 indicate that qmax/qL varies 
inversely with the gap width, and the geometric dif- 
ferences in the gap for the two cases did not affect 
this trend. 

Further correlation and application of the present 
data are dependent upon the hypothetical flow model 
for the flow between the elevons. The most elemen- 
tary assumption would be that of channel flow, but 
for the present configuration, one side of the channel 
is open and exposed directly to the kinetic energy of 
the free-stream flow. The questions that need to be 
addressed for the present study are to what extent 
did the gap flow behave as channel flow and to what 
extent was it influenced by the open side. A channel- 
flow model would assume that a finite mass flow of 
gases with fixed energy levels enters the channel; the 
flow would then develop over a definite "entrance 
length," and would continue as fully developed chan- 
nel flow between the elevon sidewalls. If channel flow 
did not exist between elevons, the three-dimensional 
flow that turns into the gap would simply develop 
classical boundary layers along each sidewall com- 
pletely independent of each other. In this regard, 
the present results give definite evidence of a chan- 
nel entrance from figure 20, where the gap pressure 
increased with decreasing gap width; this increase 
indicates an interdependence of the sidewall pressure 
on the opposite wall location, and it follows that gap 
heating increases with gap pressure. 

It can be concluded from the present results that 
the flow between elevons is channel flow to some ex- 
tent and that the mass flow between elevons is a func- 
tion of the windward elevon pressure as correlated in 

figure 19(b). Although this conclusion is important 
for general understanding, it does not make the cor- 
relation or analysis simple. In fact, the channel flow 
created by the gap between elevons is complicated by 
additional factors, including an oblique entrance an- 
gle that complicates the definition of the entrance 
parameters. Therefore, any analysis of this prob- 
lem is made with the assumption that channel flow 
must define the entrance-flow parameters from a so- 
lution of the viscous and inviscid external flow at the 
forward edge of the elevons. Definition of the 
entrance-flow parameters continues to be the most 
difficult part of the analytical solution to the 
problem. 

Effect of Reynolds Number 
In the present study, most of the tests were 

made at the lowest possible Reynolds number for the 
8' HTT. However, three tests were made at  grad- 
uated levels to provide a range of free-stream unit 
Reynolds numbers from 0.382 x lo6 to 1.46 x lo6 
per foot. The sharp leading edge with flow trips was 
used to obtain turbulent boundary layers, and the 
wing angle of attack and the elevon deflection angle 
were 5' and lo', respectively. The Mach number pro- 
files for the various Reynolds numbers are presented 
in figure 25 with z normalized by the corresponding 
boundary-layer thickness. The experimental turbu- 
lent profiles are correlated with the turbulent theory 
(eq. (11)) for the entire Reynolds number range. The 
largest variance of the experimental Mach numbers 
from the theoretical curve occurs near the surface at  
values of z / 6  less than about 0.2, and this variance 
is probably caused by flow interference of the flow 
trips at the wing leading edge. Overall, the com- 
parisons indicate that a turbulent boundary layer is 
being produced on the wing for the sharp-leading- 
edge configuration with flow trips and a = 5' for all 
Reynolds numbers tested. 

The pressure and heat-transfer data for the wind- 
ward surfaces of the wing and elevon are presented 
in figure 26. The windward pressures, which are 
normalized to the free-stream pressure, agree with 
the predicted inviscid wing pressure and level off 
just above the predicted inviscid level near the trail- 
ing edge of the elevon. The corresponding heating 
data are presented in the form of Stanton number 
based on reference temperature and the local flow 
properties at the edge of the boundary layer. As 
discussed previously, the flow on the forward sec- 
tion of the wing (circular symbols) was transitional 
for the lowest Reynolds number condition; but the 
heating for the higher Reynolds number conditions 
correlated with the turbulent theory for the entire 
length of the wing surface. The heating data for the 
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deflected elevon surface are not included, but the 
heating on the elevon trailing edge agreed with 
theory as previously shown in figure lO(b). 

The lateral pressure and heating-rate distribu- 
tions across the elevon midchord station and into 
the chordwise gap are presented in figure 27 for the 
same' unit Reynolds number range. The normalized 
pressure and heating distributions were similar for 
all Reynolds numbers; this similarity indicates that 
there was no appreciable variance from the general 
flow pattern. For the same tests, the heating distri- 
butions into the gap at the five chordwise stations are 
presented in figure 28. From x' = 8 to x' = 20, the 
maximum heating rate occurs at about z' = 1.5 in. 
for the entire range of Reynolds numbers tested, and 
the overall gap-flow pattern for the entire length is 
similar. 

Some gap-pressure variation did occur at z' x 0.5 
in figure 27 where the gap pressure was inversely 
proportional to Reynolds number. Apparently, the 
gap pressure was influenced by a corresponding vari- 
ation in the base pressure of the elevon trailing 
edge. The measured elevon base pressure, designated 
PB79, is presented in table V, and the corresponding 
P B 7 9 / p ~  levels are indicated in the figure at y' = 0 
and z' = 0. The value of P B 7 9 / p ~  also varied in- 
versely with Reynolds number. This influence of the 
base pressure on the elevon sidewall pressure at z' x 
0.5 in. indicates that there was a region of flow sep- 
aration at the gap entrance along the forward edge 
of the elevons. This influence also indicates that the 
line of maximum pressure and heating rate at  about 
z' = 1.5 in. in figure 28 was the flow reattachment 
line beyond the flow separation region. Generally, 
the separation region decreased with gap width as 
shown in figures 20 and 21, where the maximum 
pressure and heating rates associated with flow re- 
attachment occurred near the gap entrance (z' x 0) 
for W = 1 in. Although the magnitude of the pres- 
sure in the separation region was affected by varia- 
tion in base pressure of the trailing edge, the gap flow 
characteristics downstream from the gap entrance 
were not affected for the range of Reynolds number 
of the present study. 

Effect of Differential Elevon Angles 
Two tests were made at the baseline turbulent 

condition with the elevons deflected at different an- 
gles to provide a limited indication of possible effects 
of the asymmetric flow on the aerothermal loads in 
the elevon gap. The longitudinal windward elevon 
pressure and heating-rate data (fig. 29) was obtained 
for the tests where the lower elevon was fixed at 
S = 10' and the upper elevon was deflected Oo,  lo', 
and 20'. The wing angle of attack was 5', and the 

width between elevons was 1 in. The windward- 
pressure and heating-rate data of each elevon agreed 
with that predicted for each deflection angle. The 
open symbols indicate the fixed lower elevon data and 
the solid symbols indicate the corresponding data of 
the upper elevon at 6 = Oo,  lo', and 20'. The elevon 
pressure for 6 = 20' leveled out at the predicted in- 
viscid pressure, and the heating trend on the elevon 
agreed with the theory when a new boundary layer 
formed at the elevon hinge axis (x' = 0). 

The normalized lateral pressure and heating-rate 
distributions at the lower elevon midchord locations 
for both windward and gap sidewall surfaces are 
presented in figure 30. The pressures and heating 
rates are normalized with the midspan windward 
surface values and plotted against the distance from 
the elevon edge y' and z'. (See fig. 3(b).) As the 
upper elevon deflection angle was varied from 0' to 
20°, the windward pressure and heating of the lower 
elevon was increased near the edge (y' x 1 in.) to 
a maximum of 20' for the upper elevon deflection. 
This increase in pressure and heating was caused by 
crossflow from the elevon windward surface with the 
greater elevon deflection onto that with lesser elevon 
deflection. When the upper elevon was deflected 
greater or less than the fixed lower elevon, the gap- 
pressure and heating-rate distributions were affected 
in a manner similar to the maximum pressure and 
heating rates farther into the chordwise gap. The 
highest gap pressure and heating occurred when the 
elevon angles were equal, probably because of the 
greater flow interaction associated with the channel 
flow between the elevon sidewalls. When the elevon 
angles were different, the side flow was less dependent 
of the opposite wall, and the pressure and heating 
were less severe. 

In figure 31, the heating distributions into the 
gap for each of the five longitudinal locations along 
the lower elevon are presented. As the upper elevon 
deflection was varied, the profiles indicate that the 
complex flow pattern was affected along the entire 
length of the elevon, but the resulting magnitudes 
were of the same order as those of the baseline 
condition for which the elevon deflections were equal. 
In fact, the maximum gap pressures and heating rates 
with differential elevon angles presented in figure 32 
show the magnitudes to be about equal to or less than 
those (square symbols) of the equal elevon deflection 
of 10'. 

Concluding Remarks 
An aerothermal study was performed in the 

Langley 8-Foot High-Temperature Tunnel at a Mach 
number of 6.6 to define the pressures and heating 
rates on the surfaces between split elevons similar to 
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1 those used on the Space Shuttle. The model was a 
1/3-scale representation of the Shuttle wing-elevon 
junction with an elevon chord length of 24 in. and 
a variable distance between elevons from 1 to 3 in. 
The model was extensively instrumented to measure 
the detailed pressure and heating-rate distributions 
within the chordwise gap between elevons and on the 
windward surfaces of the wing and elevons. Tests 
were performed with wing angles of attack of 0' to 
10' and elevon deflections of 0' to 20' and with both 
laminar and turbulent boundary layers on the wing 
surface upstream of the elevons. 

The results of both the laminar and turbulent flow 
conditions agreed with the theoretical predictions of 
wing windward-surface pressures, windward-surface 
heating rates, and boundary-layer profiles. For the 
laminar case, boundary-layer transition occurred on 
the deflected elevon surface and flow separation oc- 
curred ahead of the elevons for the larger deflection 
angles. The same elevon deflections did not cause sig- 
nificant flow separation for the turbulent case, and 
turbulent heating levels were predicted by theory. 
The flow in the chordwise gap between the elevons 
was characterized by flow separation at the gap en- 
trance and flow reattachment at a depth into the gap 
inversely proportional to the gap width. The gap en- 
trance radius did not affect the gapflow character- 
istics. The gap pressure and heating rate increased 
significantly with decreased elevon gap width, and 
the maximum gap heating rate was proportional to 
the maximum gap pressure. Although differential 
elevon deflections affected the gap-flow characteris- 
tics, the maximum gap heating level was not sig- 
nificantly increased. Correlation of the present re- 
sults indicated that the gap heating was directly 
proportional to the elevon windward-surface pressure 
and was not dependent upon whether  the boundary 
layer on the windward elevon surface was laminar or 
turbulent. 

' 

NASA Langley Research Center 
Hampton, VA 23665-5225 
October 19, 1988 
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Table I. Locations of Model Pressure Orifices 

82.00 
82.00 
90.00 

I 
98.00 
98.00 
98.00 

Name 1 z, in. I y, in. I z’, in. I y’, in. I z’, in. 

9.05 3.00 8.05 0.00 
1.85 3.00 .85 

14.05 11 .oo 13.05 
8.05 
2.71 
.85 

13.05 
8.05 

9.05 
3.71 
1.85 

14.05 19.00 
9.05 19.00 
1.85 19.00 .85 v 

I 

13.50 
31.50 I, 49.50 67.50 75.05 

PW19 
PW24 75.05 

PU33 
PU59 
PU76 

PL27 
PL29 
PL48 
PL49 
PL51 
PL60 
PL69 
PL70 
PL77 

82.00 -9.05 3.00 8.05 0.00 
90.00 -9.05 11 .oo 8.05 . 00 
98.00 -9.05 19.00 8.05 .oo 

Wing section 

PLS3l 82.40 1.00 

-9.00 I I 1 

3.40 0.00 1.040 

PUS58 90.00 -1.00 11.00 0.00 3.400 

PLS41 
PLS52 
PLS54 
PLS56 
PLS73 

PB81 90.00 3.00 
PB82 90.00 -3.00 
PB79 103.00 2.00 
PB80 103.00 -5.00 

86.40 
90.00 
90.40 
90.40 
98.40 

11.00 2.00 5.500 
11.00 2.00 5.500 
24.00 1.00 1.000 
24.00 4.00 1.000 

7.40 
11.00 
11.40 
11.40 
11.40 

BL1 72.00 
BL2 72.00 

2.500 
.500 

1.900 
3.900 
1.119 

-15.00 
-2.00 

Boundary-layer rake 



Name 

Table 11. Locations of Model Heat-Flux Gages 

z l ,  in. I x, in. y, in. XI, in. y , in. 

t 

I 

Wing section 

Y 

QWl 
QW2 
QW3 
QW4 
QW5 
QW6 
QW7 
QW8 
QWlO 
Q W l l  
QW12 
QW13 
QW14 
QW15 
QWl6 
QW17 
QW18 
QW19 
QW20 
QW21 
QW22 
QW23 
QW24 

QL26 
QL27 
QL28 
QL29 
QL37 
QL48 
QL49 
QL50 
QL51 
QL60 
QL63 
QL69 
QL70 
QL71 
QL77 

QU33 
QU59 
QU76 

83.00 -10.05 4.00 9.05 0.00 
91.00 -10.05 12.00 9.05 .oo 
99.00 -10.05 20.00 9.05 .oo 

83.00 
83.00 
83.00 
83.76 
87.00 
91.00 I 
91.80 
95.00 
99.00 
99.00 
99.00 
99.80 

2.00 

1 
10.00 
2.00 

-10.00 
2.00 
2.00 
2.00 

10.00 
-10.00 

10.00 
2.00 

18.05 
14.55 
10.00 
6.50 
2.50 

-2.00 
-6.00 

-10.00 
Lower elevon windward surface 

15.05 
10.05 
4.71 
2.15 

10.05 
15.05 
10.05 
7.90 
4.71 
2.15 

10.05 
15.05 
10.05 
4.71 
2.15 

4.00 

1 
I 

8.00 
12.00 

12.80 
16.00 
20.00 
20.00 
20.00 
20.80 

14.05 
9.05 
3.71 
1.15 
9.05 

14.05 
9.05 
6.90 
3.71 
1.15 
9.05 

14.05 
9.05 
3.71 
1.15 

0.00 
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Table 11. Concluded 

Name x, in. y, in. X I ,  in. I yl, in. z', in. 

QLS25 
QLS3O 
QLS3l 
QLS32 
QLS34 
QLS35 
QLS36 
QLS38 
QLS39 
QLS40 
QLS41 
QLS42 
QLS43 
QLS44 
QLS45 
QLS46 
QLS47 
QLS52 
QLS53 
QLS54 
QLS55 
QLS56 
QLS57 
QLS6l 
QLS62 
QLS64 
QLS65 
QLS66 
QLS67 
QLS68 
QLS72 
QLS73 
QLS74 
QLS75 
QLS78 

QUS58 91.00 -1.00 

81.00 
83.00 
83.00 
83.00 
85.00 
85.00 
85.00 
87.00 I 

1 
88.40 
89.00 
89.00 
91.00 

92.20 
93.00 
95.00 

I 
! 

97.00 
99.00 

102.25 

12.00 0.00 3.900 

1 0 2.00 
4.00 
4.00 
4.00 
6.00 
6.00 
6.00 
8.00 I 
! 

9.40 
10.00 
10.00 
12.00 

13.20 
14.00 
16.00 

I 
I 

18.00 
20.00 

23.25 

0. i 0.535 
.659 

1.263 
2.139 
1.012 
1.991 
3.539 
.688 

1.364 
2.038 
2.719 
3.420 
4.939 
6.340 
5.900 
1.717 
3.447 
.500 

1.038 
2.070 
3.110 
4.175 
5.000 
4.200 
2.422 

.500 
1.388 
2.775 
3.740 
3.080 

.500 
1.119 
1.738 
2.420 
.500 
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Table 111. Model Configuration 

Y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
. 26 

27 
28 
29 

30 
31 

Blunt leading edge without flow trips 

~ 2 

2 
2 

1 
3 

1 
2 
3 

1 
1 

0 
0 
0 
5 
5 
5 

10 
10 
10 

5 
5 

5 
5 
5 

Sharp leading edge with flow trips 
0.00 

1 
.oo 
.oo 
.oo 
.oo 
.oo 

.25 

.25 

.25 

.oo 

.oo 

0 
0 
5 
5 
5 

10 
10 

5 
5 
5 

5 
5 

5 
5 
5 

5 
5 

0 
10 
20 
0 
5 

10 
0 
5 

10 

10 
10 

10 
10 
10 

0 
10 
0 
5 

10 
0 

10 

10 
10 
10 

10 
10 

10 
10 
10 

10 
10 

0 
10 
20 
0 
5 

10 
0 
5 

10 

10 
10 

10 
10 
10 

0 
10 
0 
5 

10 
0 

10 

10 
10 
10 

10 
10 

10 
10 
10 

0 
20 
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Table IV. Test Flow Parameters 

(a) Free stream 

Tt , Pt ,c ,  P t , m ,  P m  , Qm , (PV[P)  00 7 (PVC),, 
Test O R  psia psia psia Moo psi per foot Btu/ft2-sec-OR 

Blunt leading edge without flow trips 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

15 
16 
17 
18 
19 
20 
21  

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

3263 
3268 
3368 
3335 
3325 
3173 
3239 
3371 
3197 

3232 
3278 

3194 
3258 
3234 

3292 
3271 
3408 
3260 
3258 
3312 
3297 

3262 
3306 
3157 

3317 
3320 

3297 
3309 
3343 

3304 
3293 

618 
624 
624 
623 
648 
640 
624 
623 
640 

660 
660 

664 
622 
625 

624 
619 
627 
62 1 
664 
621 
626 

1023 
1516 
2507 

619 
654 

622 
623 
625 

622 
617 

331 
336 
376 
362 
372 
312 
326 
377 
320 

342 
360 

33 1 
332 
325 

0.0764 
.0771 
.0767 
.0767 
.0799 
.0794 
.0772 
.0766 
.0793 

6.56 
6.57 
6.66 
6.63 
6.62 
6.48 
6.54 
6.66 
6.50 

.0817 

6.54 

2.27 
2.30 
2.35 
2.33 
2.42 
2.30 
2.28 
2.35 
2.32 

2.41 
2.44 

2.40 
2.28 
2.28 

Sharp leading edge with flow trips 
345 
335 
396 
332 
354 
352 
349 

548 
853 

1200 

352 
374 

346 
352 
366 

349 
342 

0.0770 
.0765 
.0770 
.0768 
.0821 
.0766 
.0772 

.1264 

.1870 

.3110 

.0763 

.0806 

.0768 

.0768 

.0770 

.0767 

.0762 

6.59 
6.57 
6.70 
6.56 
6.56 
6.61 
6.59 

6.56 
6.60 
6.47 

6.61 
6.62 

6.59 
6.61 
6.64 

6.60 
6.59 

2.31 
2.28 
2.39 
2.28 
2.44 
2.31 
2.32 

3.76 
5.63 
8.99 

2.31 
2.44 

2.31 
2.32 
2.34 

2.31 
2.29 

0.3553+06 
.3583+06 
.3543+06 
.3553+06 
.3693+06 
.3733+06 
.3603+06 
.3533+06 
.3713+06 

.3813+06 

.3793+06 

.3853+06 

.3583+06 

.3613+06 

0.3573+06 
.3553+06 
.3543+06 
.3573+06 
.3823+06 
.3553+06 
.3583+06 

.5883+06 

.8663+06 

.1463+07 

.3533+06 

.3733+06 

.3563+06 

.3563+06 

.3553+06 

.3553+06 

.3533+06 

0.834 
.842 
.843 
.841 
.875 
.862 
3 4 2  
.842 
.863 

.890 

.890 

.895 

.839 

.843 

0.842 
.835 
.847 
.838 
.896 
.838 
.845 

1.380 
2.046 
3.378 

.836 

.883 

.839 

.841 

.844 

.839 

.833 
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Table IV. Continued 

PW7 Taw,W 7 T& 7 (PVC)%;l, 
Test a7 deg psia OR "R Btu/ft2-sec-"R 

(b) Wing surface 

(PV /P)% 7 

per foot 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

15 
16 
17 
18 
19 
20 
21  

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

0 
0 
0 
5 
5 
5 

10 
10 
10 

5 
5 

5 
5 
5 

0 
0 
5 
5 
5 

10 
10 

5 
5 
5 

5 
5 

5 
5 
5 

5 
5 

0.0764 
.0771 
.0767 
.1636 
.1700 
.1665 
.3079 
.3123 
.3142 

.1723 

.1728 

.1730 

.1626 

.1632 

3012 
3016 
3108 
3087 
3078 
2938 
3010 
3133 
2972 

2992 
3035 

2957 
3016 
2994 

1047 
1048 
1071 
1094 
1092 
1057 
1112 
1145 
1102 

1070 
1081 

1061 
1076 
1071 

0.349 
.353 
.353 
.722 
.750 
.729 

1.280 
1.306 
1.304 

.757 

.761 

.758 

.716 

.717 
Sharp leading edge with flow trips 

0.0770 
.0765 
.1652 
.1624 
.1736 
.3091 
.3111 

.2675 

.3974 

.6516 

.1624 

.1716 

.1630 

.1633 

.1641 

.1630 

.1616 

3039 
3019 
3154 
3018 
3016 
3078 
3064 

3020 
3060 
2923 

3071 
3073 

3052 
3063 
3094 

3059 
3048 

1054 
1049 
1111 
1077 
1076 
1130 
1126 

1077 
1088 
1053 

1090 
1091 

1086 
1088 
1096 

1087 
1085 

0.353 
.350 
.732 
.715 
.764 

1.290 
1.297 

1.177 
1.752 
2.852 

.716 

.757 

.718 

.720 

.725 

.719 

.712 

0.6733+05 
.6783+05 
.6663+05 
.1343+06 
.1393+06 
.1393+06 
.2343+06 
.2323+06 
.2403+06 

.1433+06 

.1423+06 

.1443+06 

.1343+06 

.135E+06 

0.6763+05 
.6733+05 
.1343+06 
.1343+06 
.1433+06 
.2323+06 
.2343+06 

.22 1E+06 

.3263+06 

.5463+06 

.1333+06 

.141E+06 

.1343+06 

.1343+06 

.1343+06 

.1343+06 

.1333+06 
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Table IV. Concluded 

2.373 
2.399 

2.366 
2.250 
2.248 

(c) Elevon surface 

.4233+06 

.4233+06 

.4253+06 

.3993+06 

.400E+06 

Blunt leading edge without flow trips 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

0 
10 
20 
0 
5 

10 
0 
5 

10 

10 
10 

10 
10 
10 

0 
10 
0 
5 

10 
0 

10 

10 
10 
10 

10 
10 

10 
10 
10 

0 
20 

0.0764 
.3090 
.8229 
.1636 
.3332 
.5734 
.3079 
.5646 
.9424 

.5980 

.6032 

.5973 

.5663 

.5665 

3012 
3037 
3170 
3087 
3088 
2959 
3010 
3143 
2994 

3013 
3056 

2978 
3038 
3015 

1047 
1119 
1281 
1094 
1125 
1127 
1112 
1180 
1178 

1142 
1154 

1132 
1149 
1143 

0.349 
1.287 
2.885 
.722 

1.408 
2.270 
1.280 
2.252 
3.520 

Sharp leading edge with flow trips 
0.0770 
.3066 
.1652 
.3167 
.6046 
.3091 
.9425 

.9321 
1.3928 
2.2392 

.5699 

.6024 

.5705 

.5727 

.5782 

.1630 
1.3970 

3039 
3040 
3154 
3027 
3038 
3078 
3087 

3041 
3082 
2944 

3092 
3095 

3074 
3085 
3117 

3059 
3109 

1054 
1120 
1111 
1109 
1149 
1130 
1205 

1150 
1162 
1123 

1165 
1165 

1159 
1163 
1171 

1087 
1291 

0.6733+05 
.2333+06 
.4633+06 
.1343+06 
.2543+06 
.4093+06 
.2343+06 
.3903+06 
.610E+06 

0.353 
1.277 
.732 

1.334 
2.402 
1.290 
3.533 

3.705 
5.547 
8.857 

2.271 
2.401 

2.271 
2.281 
2.307 

.719 
4.678 

0.6763+05 
.2323+06 
.1343+06 
.2443+06 
.4263+06 
.2323+06 
.600E+06 

.6563+06 

.9733+06 

.160E+07 

.3983+06 

.42OE+O6 

.3993+06 

.400E+06 

.4203+06 

.1343+06 

.7463+06 
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rest P W l  PW4 PW9 PW12 PW19 PW24 PL27 PL29 PL48 PL49 PL51 PL60 PL69 PL70 PL77 

6.108 
6.209 

6.015 
6.723 
6.339 

5.618 
5.718 

5.553 
6.229 
5.873 

1.026 
1.373 
2.221 
2.227 
2.156 
4.008 
3.925 

2.278 
2.257 
2.122 

2.215 
2.159 

2.174 
2.214 
2.156 

2.151 
2.152 

1.039 
1.399 
2.234 
2.174 
2.168 
4.047 
3.912 

2.334 
2.262 
2.145 

2.228 
2.196 

2.201 
2.240 
2.143 

2.138 
2.178 

Table V. Model Pressure Data 

I P l P m  1 

Blunt leading edge without flow trips 
- 
1.047 
1.453 
1.877 
2.112 
2.240 
2.809 
3.899 
3.812 
4.048 

2.460 
2.442 

2.454 
2.835 
2.458 

- 
1.021 
1.414 
1.995 
2.099 
2.253 
2.771 
3.925 
3.825 
4.111 

- 
0.929 
1.543 
2.595 
1.864 
2.666 
3.501 
3.446 
4.674 
6.734 

2.999 
3.166 

3.026 
3.563 
3.299 

- 
0.903 
2.322 
5.567 
1.643 
2.791 
4.798 
2.992 
5.013 
8.928 

4.700 
4.417 

4.617 
4.824 
4.502 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 - 

- 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 - 

- 
1.531 
1.686 
1.578 
2.608 
2.691 
2.783 
4.417 
4.399 
4.414 

2.509 
2.564 

2.625 
2.822 
2.561 

- 
1.073 
1.245 
1.265 
2.177 
2.290 
2.355 
4.028 
3.903 
4.048 

2.081 
2.110 

2.151 
2.406 
2.122 

- 
1.073 
1.180 
1.343 
2.073 
2.178 
2.305 
3.860 
3.760 
3.859 

1.995 
2.123 

2.041 
2.341 
2.018 

- 
1.008 
1.206 
1.799 
2.099 
2.178 
2.355 
3.899 
3.799 
3.909 

2.069 
2.037 

2.066 
2.406 
2.070 

1.427 
5.486 

16.037 
2.177 
3.705 
6.637 
4.093 
6.919 

12.043 

1.950 
8.340 

29.531 
2.151 
3.980 
7.594 
4.275 
9.308 

14.981 

7.087 
7.129 

7.679 
7.503 
7.154 

1.191 
4.903 

20.196 
2.125 
3.930 
7.607 
4.067 
7.219 

12.648 

6.891 
7.104 

6.829 
7.399 
7.050 

1.034 
3.165 

11.825 
1.786 
3.279 
6.209 
3.329 
5.901 

10.378 

6.255 
5.558 

6.112 
6.060 
5.524 

1.047 
1.738 
2.738 
2.151 
3.029 
3.841 
3.964 
5.496 
7.907 

1.086 
3.009 
7.093 
2.099 
3.479 
6.209 
3.886 
6.436 

11.173 

0.955 
2.607 
6.206 
1.930 
3.254 
5.768 
3.549 
5.927 

10.441 

5.226 
5.288 

5.155 
5.735 
5.408 

2.448 
2.466 

3.452 
3.534 

2.467 
2.783 
2.432 

3.439 
3.927 
3.674 

Sharp leading edge with flow trips 
- 
1.000 
1.072 
2.208 
2.174 
2.156 
4.164 
4.041 

2.278 
2.235 
2.103 

2.189 
2.159 

2.174 
2.214 
2.078 

2.138 
2.165 

- 
1.013 
1.098 
2.117 
2.070 
2.071 
3.838 
3.718 

2.168 
2.091 
1.920 

2.110 
2.072 

2.096 
2.122 
2.065 

2.047 
2.073 

- 
1.026 
1.137 
2.273 
2.253 
2.205 
4.099 
3.964 

2.373 
2.289 
2.151 

2.267 
2.233 

2.253 
2.279 
2.169 

2.177 
2.244 

- 
0.909 
3.516 
1.753 
3.359 
6.151 
3.146 
9.922 

6.653 
6.610 
6.318 

6.461 
6.303 

6.419 
6.068 
6.117 

5.971 
7.638 

- 
1.078 
1.124 
2.364 
2.305 
2.290 
4.413 
4.249 

2.366 
2.342 
2.203 

2.346 
2.295 

2.305 
2.357 
2.260 

2.269 
2.283 

- 
1.026 
2.601 
2.208 
3.555 
5.542 
4.034 
9.650 

6.005 
5.925 
6.003 

5.570 
5.608 

5.664 
5.547 
5.649 

5.476 
5.499 

- 
0.948 
1.974 
2.117 
3.242 
4.957 
3.708 
8.484 

5.309 
5.273 
5.238 

4.928 
4.975 

5.078 
4.961 
4.896 

4.850 
4.948 -. 

1.169 
4.510 
2.403 
4.844 
7.771 
4.334 

13.977 

8.101 
8.000 
7.559 

7.864 
8.052 

8.112 
7.839 
9.377 

7.705 
7.559 

0.883 
3.608 
1.844 
3.555 
6.261 
3.394 

10.492 

6.669 
6.508 
6.100 

7.300 
6.328 

7.161 
6.094 
6.143 

5.945 
6.982 

1.065 
4.144 
2.195 
4.154 
7.296 
3.982 

12.202 

7.729 
7.652 
7.174 

7.339 
7.481 

7.500 
7.292 
7.571 

7.197 
7.073 

0.948 
3.987 
2.143 
4.036 
7.320 
3.851 

11.891 

7.824 
7.765 
7.280 

7.313 
7.457 

7.422 
7.253 
7.377 

7.158 
7.231 

1.169 
4.588 
2.403 
5.313 
7.820 
4.465 

17.694 

8.220 
8.080 
7.614 

7.995 
8.139 

8.333 
7.930 

11.351 

7.797 
8.793 

1.091 
4.392 
2.286 
4.570 
7.795 
4.295 

13.692 

8.220 
8.096 
7.595 

7.811 
8.015 

8.060 
7.839 
8.649 

7.679 
7.546 
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rest PU33 PU59 PU76 PLS31 PLS41 PLS52 PLS54 PLS56 PLS73 PUS58 PB81 PB82 PB79 PB80 

Table V. Continued 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 - 

- 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 - 

0.432 
,687 

1.551 
.469 
,826 

1.310 
.868 

1.319 
2.043 

.845 
,871 

1.154 
1.391 
.750 

0.458 
.830 

1.239 
.222 
.375 
,579 
,350 
.470 
.643 

.526 

.454 

.535 
,663 
.479 

0.602 
1.064 
3.716 

.691 
1.252 
2.053 
1.218 
2.010 
3.581 

1.493 
1.031 

2.236 
2.133 

,970 

0.510 
,558 

1.134 
,274 
.451 
.693 
,440 
.587 
.794 

.526 

.552 

.668 

.767 

.556 

0.423 
.451 
,652 
,196 
.272 
,406 
,196 
.185 
,148 

.137 
,180 

.153 

.427 

.157 

0.428 
.507 
.821 
.192 
.287 
.419 
.192 
.202 
,159 

,158 
,193 

.170 

.462 

.177 

0.670 
.826 

1.636 
,408 
.492 
,608 
.519 
.496 
,433 

.351 

.402 

.416 

.679 

.401 

1.047 
1.777 
2.842 
2.164 
3.004 
3.929 
4.003 
5.666 
8.083 

3.574 
3.816 

3.572 
4.044 
3.959 

1.113 
2.944 
6.923 
2.177 
3.630 
6.385 
4.041 
6.684 

11.387 

5.985 
6.196 

5.930 
6.554 
6.210 

1.126 
4.073 

17.040 
2.099 
3.842 
7.380 
3.977 
7.611 

12.295 

6.989 
7.288 

6.926 
7.386 
7.167 

0.406 
,584 

1.734 
,326 
,526 
.743 
,505 
.679 
.895 

.734 
,466 

.778 
,832 
,453 

0.406 
.493 

1.213 
,274 
.451 
,705 
,479 
.640 
.996 

.465 

.393 

.547 
,806 
.375 

0.432 
.610 

1.525 
.456 
.726 
.957 
.777 

1.044 
1.425 

1.640 
,528 

1.871 
1.235 
.362 

0.665 
.774 

1.682 
.343 
,438 
.553 
,417 
,439 
.353 

.306 
,364 

.390 
,635 
,358 

Sharp leading edge with flow trips 

1.065 
2.536 
2.247 
3.633 
5.579 
4.047 
9.521 

1.169 
4.248 
2.299 
4.401 
7.576 
4.413 

12.487 

8.188 
7.866 
7.781 

7.720 
8.077 

7.565 
7.813 
7.766 

2.203 
19.068 

1.078 
4.353 
2.325 
4.492 
7.820 
4.125 

12.681 

0.494 
.758 
.286 
.365 
.426 
.352 
.699 

0.169 
.288 
.234 
,299 
,390 
.287 
,725 

.396 

.358 
,199 

.498 
,323 

,482 
.482 
,338 

.417 

.459 

0.195 
.379 
.429 
.547 
.743 
.679 

1.321 

.704 

.599 

.405 

2.280 
.583 

2.214 
.898 
,844 

.756 

.630 

0.195 
,471 
.442 
.716 

1.206 
,770 

2.176 

1.297 
1.251 
1.109 

.957 

.645 

1.276 
1.302 
.584 

1.565 
1.260 

0.169 
.196 
,234 
.273 
,353 
.261 
,570 

.348 

.326 
,177 

.498 
,323 

.495 
,430 
,286 

.378 
,512 

0.299 
1.268 
.701 

1.211 
2.363 
1.240 
4.041 

2.658 
2.706 
2.482 

1.927 
1.030 

2.891 
2.578 

,948 

.goo 
1.732 

0.221 
,275 
.286 
.352 
.426 
,326 
.725 

0.162 
.158 
.164 
,143 
,078 
.110 
,104 

.081 

.076 
,094 

.128 
,125 

.122 

.159 
,110 

.087 

.lo4 

0.126 
,175 
.156 
.141 
.095 
.lo8 
.120 

.094 
,090 
.095 

.136 

.141 

.126 

.171 

.lo5 

,064 
,131 

0.274 
.292 
.299 
.298 
,274 
.292 
.321 

,180 
.162 
.lo4 

,316 
.297 

.299 

.371 

.301 

.265 

.331 

0.297 
,325 
,377 
.372 
.337 
.375 
,385 

.229 
,196 
,128 

.368 

.318 

,355 
,387 
.314 

.335 

.382 

5.965 
5.979 
5.942 

8.481 
8.091 
7.977 

.427 

.385 
,232 

.435 
,417 
.283 

5.609 
5.707 

8.100 
8.065 

.511 
,422 

.603 

.360 

5.573 
5.664 
5.506 

7.852 
7.956 
7.766 

.534 

.521 
,403 

,638 
.534 
.325 

2.112 
13 740 

2.216 
19.488 

,404 
.551 

.326 
1.129 
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Test PS PT1 PT2 P T l l  PT12 PT13 PT4 PT5 PT6 PT7 PT8 PT9 PTlO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

1.039 
1.244 
1.794 
1.969 
2.095 
2.252 
3.759 
3.735 
3.677 

1.973 
1.960 

1.972 
2.295 
1.965 

1.419 
1.512 
1.847 
3.274 
3.562 
3.547 
9.934 
9.228 

10.985 

3.151 
3.480 

3.373 
3.427 
3.514 

2.102 
1.977 
2.302 
5.605 
5.801 
5.372 

17.390 
16.586 
20.079 

4.984 
5.715 

5.306 
5.222 
5.984 

10.746 
9.709 
2.965 

20.030 
20.826 
20.500 
43.460 
42.516 
42.900 

12.446 
12.519 
4.657 

24.729 
24.472 
24.511 
48.206 
46.986 
48.397 

15.084 
15.671 
7.536 

31.791 
29.982 
30.574 
67.035 
65.753 
67.666 

29.635 
30.098 

30.219 
30.676 
31.590 

15.726 
16.042 
8.917 

34.512 
32.746 
32.712 
73.927 
72.436 
74.356 

32.211 
32.348 

32.104 
33.300 
34.690 

16.678 
16.930 
11.374 
40.949 
38.073 
37.986 
86.913 
85.838 
88.050 

37.650 
37.509 

18.839 
19.021 
14.656 
50.416 
46.851 
47.048 

104.999 
103.854 
105.300 

46.263 
46.188 

16.721 
17.864 

23.978 25.880 
24.226 26.409 

54.481 
57.708 
76.970 
74.845 
73.745 

L18.961 
115.373 

83.975 
85.680 
89.745 

78.933 
78.263 

75.736 
77.405 
74.551 

57.256 
59.044 
89.665 
86.940 
88.491 

136.281 
132.823 

98.851 
98.504 

100.442 

91.539 
92.239 

87.831 
90.072 
87.179 

Table V. Concluded 

[ P l P m l  

PT3 
- 

PT14 

3.486 
2.975 
2.373 
9.477 
9.116 
8.601 
!3.645 
!2.903 
!5.072 

8.510 
9.013 

8.714 
8.571 
9.609 - 

14.041 
14.240 
5.492 

27.352 
26.417 
26.693 
56.074 
54.514 
55.980 

5.026 
2.064 
2.430 

13.875 
13.160 
12.650 
30.034 
29.225 
31.111 

12.673 
13.265 

12.916 
12.523 
13.609 

6.558 
5.573 
2.540 

17.087 
16.337 
16.107 
35.025 
34.051 
35.796 

15.994 
16.396 

16.748 
15.750 
16.704 

23.781 
23.927 
20.256 
65.733 
62.731 
63.462 

126.772 
126.319 
126.555 

62.514 
62.596 

62.461 
63.684 
64.881 

29.215 
29.595 
26.356 
76.932 
73.980 
76.033 
.38.561 
.36.926 
.36.406 

74.902 
75.263 

74.357 
75.437 
75.801 

37.340 
38.723 
40.567 

46.200 
47.347 
49.543 

18.118 
20.079 
20.757 

Sharp leading edge with flow trips 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

1.088 
1.188 
2.244 
2.217 
2.177 
4.034 
3.863 

2.299 
2.194 
2.193 

2.239 
2.228 

2.215 
2.254 
2.165 

2.169 
2.181 

2.390 
2.318 

10.309 
10.349 
10.424 
21.338 
20.383 

12.745 
13.433 
14.379 

10.215 
10.287 

10.191 
10.642 
9.658 

9.647 
10.125 

6.157 
4.633 

28.283 
27.262 
26.945 
45.261 
43.412 

28.647 
28.405 
30.975 

28.147 
27.965 

27.556 
28.392 
26.918 

27.094 
27.791 

9.311 
7.141 

32.201 
31.163 
30.973 
51.087 
48.604 

13.079 
11.369 
33.774 
32.698 
32.505 
52.997 
50.525 

33.759 
33.187 
34.869 

34.066 
33.712 

33.000 
33.951 
32.516 

32.704 
33.720 

16.971 
16.063 
37.206 
35.818 
35.776 
58.409 
55.587 

37.396 
37.198 
39.254 

37.206 
36.813 

35.965 
37.491 
35.622 

35.724 
37.138 

36.687 
42.239 
49.123 
49.052 
48.837 
78.273 
75.361 

52.079 
52.985 
56.390 

50.582 
50.439 

49.900 
51.152 
48.013 

48.040 
50.521 

45.409 
50.214 
57.871 
57.135 
57.040 
90.607 
87.845 

61.453 
62.929 
67.340 

58.908 
58.847 

57.415 
58.725 
55.818 

56.166 
59.054 

52.768 
56.359 
69.577 
68.201 
68.207 

108.298 
105.126 

74.863 
76.579 
80.788 

71.089 
70.323 

68.357 
70.303 
67.118 

67.193 
69.371 

58.099 
58.308 

100.345 
97.241 
98.592 

147.577 
144.237 

107.315 
103.133 
103.885 

101.404 
102.146 

97.512 
100.573 
98.345 

96.098 
98.261 

58.387 
58.869 

104.969 
10 1.266 
101.879 
154.129 
150.249 

109.517 
104.496 
105.123 

105.007 
104.825 

100.780 
104.193 
102.578 

99.837 
102.033 

59.251 
59.818 

104.488 
102.5 79 
102.797 
156.903 
153.266 

110.168 
105.093 
105.609 

15.515 
106.443 

102.023 
105.203 
103.508 

101.278 
103.104 

32.447 
32.039 
33.054 

32.495 
32.165 

31.620 
32.526 
31.016 

31.245 
32.087 
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Test QWl QW2 QW3 QW4 QW5 QW6 QW7 QW8 QWlO Q W l l  QW12 QW13 QW14 

0.341 
.344 
.337 
,490 
.480 
.486 
.711 
.737 
.697 

,460 
,471 

.475 

.491 

.500 

0.266 
.279 
.271 
.383 
,381 
,384 
,564 
,583 
,543 

.363 

.367 

.376 
,385 
.397 

,331 
.355 

.307 .364 

.344 .388 

0.285 
.305 

1.624 
1.634 
1.622 
2.679 
2.535 

1.496 
1.329 
1.218 

1.715 
1.738 

1.575 
1.671 
1.603 

1.631 
1.597 

0.494 
.567 

2.360 
2.427 
2.130 
3.631 
3.433 

2.072 
1.850 
1.714 

2.455 
2.389 

2.402 
2.380 
2.287 

2.358 
2.313 

0.340 
.408 

1.830 
1.764 
1.677 
2.695 
2.571 

1.570 
1.401 
1.336 

1.851 
1.781 

1.772 
1.821 
1.810 

1.808 
1.786 

0.457 
.506 

1.792 
1.782 
1.647 
2.710 
2.560 

1.545 
1.385 
1.291 

1.885 
1.790 

1.788 
1.840 
1.807 

1.826 
1.804 

Table VI. Model Heat Transfer Data 

Blunt leading edge without flow trips 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 - 

0.222 
.189 
.281 
,371 
,369 
,371 
.985 
.868 
,924 

.358 

.362 

.392 

.392 
,384 

0.372 
.371 
.352 
.561 
.501 
.525 
.876 
.811 
.835 

,486 
.553 

.521 

.524 

.528 

0.313 
.314 
.322 
.482 
,488 
,480 
,804 
,712 
.743 

.457 

.459 

.474 

.482 

.475 

0.248 
,260 
.258 
.370 
.375 
.383 
.705 
.619 
.620 

.349 
,367 

.376 

.383 

.383 

0.235 
.240 
,242 
,348 
,359 
,365 
.742 
.630 
.645 

0.226 
.220 
.281 
.333 

. .348 
.364 
,814 
.684 
.707 

0.232 
,226 
.289 
,382 
.362 
.379 
.993 
.790 
.902 

0.468 
.448 
.456 
.680 
.629 
.617 
.942 
.945 
,891 

.619 

.637 

.636 

.645 

.601 

0.452 
.484 

1.547 
1.618 
1.735 
3.928 
3.720 

2.060 
1.837 
1.669 

1.567 
1.820 

1.555 
1.559 
1.545 

1.509 
1.627 

0.329 
.341 
.332 
,523 
.473 
.460 
.725 
.730 
.672 

.442 

.450 

.474 

.473 

.496 

0.266 
,279 
,284 
.394 
.392 
.396 
.622 
.603 
.577 

,371 
,384 

,386 
.404 
.401 

0.600 
.579 
,590 
.844 
.771 
,745 

1.120 
1.092 
1.054 

,758 
.746 

.768 
,777 
.775 

.365 

.373 

.365 

.360 

.361 
,351 

.383 

.407 

.386 

Sharp leading edge with flow trips 

15 
16 
17 
18 
19 
20 
21 

0.583 
,623 

1.508 
1.637 
1.709 
4.125 
3.894 

0.350 
.372 

1.514 
1.593 
1.665 
3.263 
3.055 

1.754 
1.564 
1.415 

1.558 
1.806 

1.506 
1.575 
1.487 

1.481 
1.535 

0.389 
.429 

2.046 
1.964 
1.934 
3.097 
2.930 

1.838 
1.622 
1.534 

2.063 
2.097 

1.970 
1.991 
1.946 

1.915 
1.953 

0.320 
.384 

1.847 
1.775 
1.705 
2.730 
2.603 

1.589 
1.420 
1.331 

1.887 
1.809 

1.792 
1.844 
1.829 

1.812 
1.797 

0.367 
.390 

1.857 
1.901 
1.899 
3.314 
3.149 

1.828 
1.620 
1.482 

1.984 
2.085 

1.807 
1.923 
1.846 

1.863 
1.855 

0.315 
,342 

1.827 
1.815 
1.748 
2.812 
2.675 

1.604 
1.412 
1.298 

1.923 
1.875 

1.785 
1.871 
1.802 

1.825 
1.797 

0.320 
,370 

1.918 
1.842 
1.773 
2.827 
2.693 

1.641 
1.462 
1.364 

1.959 
1.865 

1.856 
1.906 
1.892 

1.882 
1.860 

0.403 
.463 

1.757 
1.679 
1.643 
2.567 
2.449 

1.546 
1.378 
1.304 

1.740 
1.768 

1.698 
1.709 
1.684 

1.655 
1.676 

22 
23 
24 

2.153 
1.867 
1.659 

25 
26 

1.586 
1.672 

27 
28 
29 

1.570 
1.534 
1.499 

I 24 



Table VI. Continued 

0.184 
.692 

.191 

.234 

rest I QW15 I QWl6 1 QW17 I QWl8 I QW19 I QW20 I QW21 I QW22 I QW23 I QW24 1 QL26 I QL27 I QL28 

0.198 
.lo4 
.479 
,317 
249 
.138 
967 
.739 
,764 

.132 

.166 
10 
11 

0.478 
,453 

1.784 
1.774 
1.639 
2.694 
2.541 

1.534 
1.386 
1.284 

1.875 
1.768 

1.763 
1.831 
1.806 

1.816 
1.798 

12 
13 
14 

0.361 
.346 

1.731 
1.665 
1.594 
2.574 
2.438 

1.506 
1.334 
1.260 

1.770 
1.699 

1.679 
1.725 
1.705 

1.705 
1.687 

- 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

0.402 
.340 

1.664 
1.638 
1.518 
2.487 
2.357 

1.437 
1.284 
1.208 

1.738 
1.643 

1.648 
1.694 
1.667 

1.675 
1.648 

0.232 
.110 
.461 
.371 
.344 
,157 

1.096 
.877 
.954 

0.381 
.364 

1.788 
1.725 
1.645 
2.649 
2.512 

1.550 
1.385 
1.305 

1.820 
1.753 

1.731 
1.776 
1.765 

1.763 
1.736 

.164 

.214 

0.476 
2.067 
1.639 
2.828 
3.869 
2.487 
5.782 

3.698 
3.353 
3.301 

4.661 
4.443 

4.644 
4.431 
4.478 

4.451 
4.339 

.208 
,182 
.203 

0.404 
1.670 
1.589 
2.721 
3.880 
2.503 
5.948 

3.807 
3.484 
3.527 

4.482 
4.320 

4.404 
4.317 
4.304 

4.290 
4.124 

0.198 
.084 
.504 
.318 
.330 
.160 
.904 
.753 
,740 

.123 

.202 

.195 

.184 

.196 

0.384 
.368 

1.003 
.458 
.544 
,292 

1.365 
1.274 
1.326 

.298 

.371 

.352 

.317 

.336 

0.558 
.605 

1.594 
1.599 
1.444 
2.401 
2.281 

1.295 
1.152 
1.111 

1.708 
1.652 

1.619 
1.692 
1.626 

1.675 
1.681 

Blunt leading edge without flow trips 

I 

.233 .171 

.209 .lg4 I .155 .150 

0.203 
.lo8 
.545 
.334 
,273 
.156 
,958 
,764 
.751 

.126 

.171 

.182 

.160 

.153 

0.196 
.097 
.600 
.326 
.320 
.143 
.973 
.814 
.739 

.125 

.177 

.192 

.166 

.162 

0.449 
.085 
.573 
.306 
.307 
.145 
.976 
.803 
.717 

,128 
.160 

.188 

.179 

.174 

0.507 
.483 

1.644 
1.658 
1.497 
2.481 
2.345 

1.383 
1.236 
1.147 

1.748 
1.661 

1.658 
1.727 
1.685 

1.711 
1.708 

Sharp leading edge with flow trips 

0.413 
.353 

1.525 
1.516 
1.387 
2.273 
2.144 

1.304 
1.165 
1.089 

1.604 
1.509 

1.512 
1.563 
1.534 

1.561 
1.533 

0.368 
.360 

1.719 
1.654 
1.601 
2.533 
2.416 

1.500 
1.338 
1.272 

1.731 
1.696 

1.661 
1.680 
1.684 

1.675 
1.657 

0.185 
.091 
.541 
.325 
.290 
.160 
.989 
.863 
.790 

,142 
.165 

.200 

.201 

.169 

0.396 
.346 

1.713 
1.622 
1.595 
2.509 
2.407 

1.511 
1.350 
1.282 

1.692 
1.695 

1.638 
1.653 
1.654 

1.624 
1.632 

0.216 
.091 
.533 
.368 
.332 
.172 

1.178 
1.060 
1.010 

.159 

.184 

,237 
.223 
.198 

0.443 
.402 

1.827 
1.752 
1.720 
2.691 
2.568 

1.634 
1.438 
1.351 

1.818 
1.838 

1.764 
1.776 
1.765 

1.735 
1.758 

0.229 
,786 

4.187 
.344 
,504 

1.909 
1.396 
2.232 
5.134 

1.617 
1.584 

1.791 
1.631 
1.701 

0.164 
,546 

1.852 
.326 
.387 

1.670 
1.091 
1.662 
4.110 

1.413 
1.444 

1.560 
1.427 
1.518 

0.593 
2.648 
1.738 
3.040 
4.324 
2.832 
6.881 

4.303 
4.172 
4.501 

5.211 
5.027 

5.142 
4.979 
5.013 

5.013 
4.861 

0.159 
.473 

1.825 
.287 
.359 

1.539 
.931 

1.480 
3.675 

1.317 
1.396 

1.466 
1.329 
1.385 



Table VI. Continued 

rest I QL29 I QL37 I QL48 I QL49 1 QL50 I QL51 I QL60 I QL63 I QL69 1 QL70 I QL71 QL77 I QU33 

- 
1 

3 
4 
5 
6 
7 
8 
9 

2 

10 
11 

12 
13 
14 - 

- 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 - 

0.517 0.691 
2.843 3.765 
1.636 1.800 
3.121 3.547 
4.767 5.378 
2.624 2.869 
7.131 8.213 

4.765 5.263 
4.369 4.914 
3.936 4.646 

5.463 6.198 
5.267 6.083 

5.417 6.202 
5.294 6.051 
5.282 5.909 

5.176 5.864 
5.006 5.711 

0.236 
,591 

2.249 
.418 
.557 

1.759 
1.177 
1.895 
4.305 

1.517 
1.618 

1.588 
1.499 
1.582 

0.580 
3.397 
1.783 
3.667 
5.703 
2.927 
8.712 

5.856 
5.454 
4.804 

6.256 
6.158 

6.287 
6.083 
6.059 

5.902 
5.708 

0.494 
1.946 
1.752 
2.921 
4.243 
2.760 
6.172 

3.979 
3.581 
3.360 

4.805 
4.705 

4.675 
4.584 
4.658 

4.539 
4.535 

0.162 
,956 

3.524 
.308 
,572 

3.004 
1.234 
2.315 
5.513 

2.619 
2.678 

2.728 
2.679 
2.503 

0.598 
2.532 

11.361 
.445 

1.016 
4.014 
1.768 
3.687 
7.167 

3.451 
3.636 

3.822 
3.792 
3.375 

Blunt leading edge without flow trips 

0.158 
1.474 
5.153 

.342 
,837 

4.084 
1.491 
3.318 
7.594 

3.582 
3.765 

3.929 
3.805 
3.522 

0.219 
1.463 
4.620 

.371 
,912 

3.740 
1.514 
3.059 
6.085 

3.286 
3.477 

3.504 
3.613 
3.423 

0.174 
1.248 
4.397 
.351 
.691 

3.413 
1.255 
2.613 
5.823 

3.068 
3.267 

3.189 
3.260 
3.040 

0.193 
1.016 
4.065 
.377 
.659 

2.985 
1.143 
2.377 
5.356 

2.689 
2.693 

2.693 
2.668 
2.583 

0.367 
1.878 
7.642 
.386 

1.164 
3.711 
1.641 
3.501 
6.034 

3.282 
3.426 

3.542 
3.580 
3.403 

Sharp leading edge with flow trips 

0.530 
3.145 
1.765 
3.273 
5.061 
2.719 
7.277 

4.868 
3.552 
2.273 

5.735 
5.600 

5.559 
5.691 
5.621 

5.530 
5.409 

0.522 
3.033 
1.668 
3.224 
5.142 
2.586 
7.429 

5.181 
4.719 
4.352 

5.733 
5.660 

5.710 
5.562 
5.581 

5.415 
5.310 

0.486 
2.659 
1.391 
2.713 
4.324 
2.164 
6.173 

4.245 
3.862 
3.423 

4.853 
4.743 

4.710 
4.559 
4.547 

4.436 
5.312 

0.543 
3.238 
1.650 
3.060 
4.632 
2.540 
6.953 

4.436 
3.379 
2.161 

5.291 
5.148 

5.106 
5.252 
5.135 

5.098 
4.967 

0.876 
2.965 

12.418 
,419 

1.277 
3.979 
1.893 
5.135 
7.505 

3.539 
3.944 

4.070 
4.062 
3.597 

0.733 
3.791 
1.622 
3.255 
4.807 
2.614 
9.124 

4.729 
4.281 
3.928 

5.558 
5.459 

5.509 
5.438 
5.474 

5.239 
5.592 

0.466 
2.386 

15.653 
,349 

1.252 
4.287 
1.787 
3.993 
7.411 

3.733 
4.165 

4.069 
4.262 
3.941 

0.634 
3.772 
1.761 
3.551 
5.265 
2.849 
8.029 

5.324 
4.844 
4.348 

6.013 
5.811 

5.917 
5.781 
5.714 

5.611 
5.437 

0.156 
1.855 
7.428 
.347 

, .994 
4.036 
1.485 
3.327 
6.676 

3.542 
3.846 

3.879 
4.038 
3.632 

0.560 
3.699 
1.685 
3.383 
5.261 
2.635 
7.476 

5.165 
4.756 
4.435 

5.917 
5.917 

5.740 
5.657 
5.712 

5.522 
5.906 

0.148 
1.468 
6.042 

.340 

.822 
3.498 
1.345 
2.871 
5.795 

3.231 
3.133 

3.356 
3.282 
3.128 

0.482 
2.935 
1.383 
2.745 
4.256 
2.206 
6.286 

4.296 
4.002 
3.689 

5.174 
4.656 

4.969 
4.511 
4.545 

4.345 
5.179 

0.147 
.511 

1.905 
.289 
,432 

2.044 
1.394 
2.409 
5.338 

1 .goo 
1.834 

1.990 
1.831 
1.915 

0.523 
2.339 
1.842 
3.147 
4.884 
2.896 
7.215 

4.908 
4.631 
4.699 

5.402 
5.870 

5.367 
5.290 
5.372 

1.780 
13.570 

26 



0.063 
.152 
.737 
.164 
.240 
,349 
.395 
.441 
.717 

1.194 
.257 

1.040 
,354 
.337 

0.133 
.263 
.816 
.338 
.504 
.851 
.659 
.866 

1.521 

.666 

.431 

.721 

.609 

.387 

0.118 
.395 
,421 
.516 
,704 
,520 
.922 

.608 
,521 
.510 

1.956 
.758 

1.596 
.729 
.755 

.765 
1.129 

0.056 
.352 

7.700 
.598 
.779 
.659 

1.320 

.732 

.OOO 

.636 

1.149 
.738 

1.137 
,662 
.626 

1.382 
.843 

15 0.593 

Table VI. Continued 

[ N ~ ~ , ~  x lo3] 

Blunt leading edge without flow trips 
-- 
0.134 

,170 
,631 
.208 
.283 
.445 
.371 
.506 
.809 

.395 

.330 

.463 

.414 

.292 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.188 
.227 
.716 
.271 
.396 
.647 
.508 
.689 

1.160 

.406 

.400 

.535 

.553 

.339 

0.080 
.113 
.579 
.181 
.253 
.335 
.362 
.462 
.746 

.288 

.262 

.380 

.329 

.269 

0.027 
,096 
,500 
.054 
.lo3 
.126 
.155 
.198 
.291 

,162 
.122 

.194 

.154 

.140 

0.059 
.096 
,667 
.165 
.207 
.179 
.363 
.415 
.612 

0.013 
.098 
.652 
.054 
,094 
.144 
.163 
.201 
.304 

0.109 
.132 
.630 
.210 
.314 
,443 
.485 
.572 
.919 

.665 

.391 

.719 

.390 

.362 

0.076 
.163 

1.127 
.170 
.197 
.360 
.433 
.515 
.841 

,463 
.368 

.218 

.174 

.180 

0.091 
.064 
.548 
.170 
.222 
.186 
.440 
.448 
.659 

.251 

.208 

.377 

.266 
,262 

0.166 
1.264 
5.291 

.282 

.819 
3.702 
1.574 
3.324 
6.231 

0.252 
2.026 

12.605 
.371 

1.228 
4.657 
2.084 
4.671 
8.120 

4.362 
4.453 

4.419 
4.299 
4.509 

10 
11 

3.516 
3.402 

.247 

.175 
.192 
.112 

3.636 
3.491 
3.485 

.344 
,256 
,243 

.192 

.143 

.116 

12 
13 
14 

Sharp leading edge with flow trips 

0.012 
.094 
.033 
.091 
.147 
.121 
.252 

.135 

.112 

.085 

.248 

.147 

,241 
,158 
.131 

.223 

.249 

0.090 
.206 
.232 
.304 
,391 
.329 
.617 

.352 

.306 

.266 

.530 

.425 

.549 
,373 
.376 

.617 
,491 

0.136 
.319 
.332 
.445 
.624 
.499 

1.046 

.586 

.523 

.468 

.704 

.528 

.686 

.589 

.459 

.937 

.707 

0.099 
.253 
.247 
.337 
.468 
.376 
.748 

.433 
,385 
.334 

.595 

.379 

.562 

.488 

.340 

.567 
,574 -- 

0.107 
.197 
.311 
,387 
.523 
.440 
.793 

.463 
,398 
,351 

.740 

.588 

.719 

.496 

.506 

.592 
,686 

0.014 
.lo9 
.046 
.121 
.191 
.157 
.300 

.171 

.142 

.112 

.271 

.217 

.289 
,187 
.197 

.239 

.252 

0.134 
.291 
.454 
.588 
.781 
.640 

1.159 

.720 

.654 

.630 

1.387 
.817 

1.297 
.681 
.692 

,963 
.946 

0.695 
4.339 
1.773 
3.465 
5.700 
2.799 
9.017 

5.723 
4.993 
4.740 

6.029 
6.443 

5.965 
5.920 
5.877 

1.759 
12.060 

0.115 
,312 
.366 
.512 
.747 
.539 

1.189 

.688 
,570 
,495 

.684 

.836 

.450 
,655 
.688 

.630 

.733 

0.143 
.245 
.525 
.666 
.848 
.731 

1.241 

.776 

.697 

.659 

1.172 
.895 

.go1 

.741 

.742 

.922 
1.233 

16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 - 

3.447 
1.738 
3.272 
5.216 
2.645 
7.337 

5.335 
4.875 
4.731 

5.594 
5.974 

5.467 
5.567 
5.399 

1.598 
11.494 

27 



rest QLS42 QLS43 QLS44 QLS45 QLS46 QLS47 QLS52 QLS53 QLS54 QLS55 QLS56 QLS57 QLS6l 

0.118 
,449 
.417 
.494 
.650 
.529 

1.002 

.526 

.412 

.385 

2.556 
.616 

0.222 
,617 
,755 

1.008 
1.423 
1.093 
2.463 

1.302 
1.141 
1.257 

2.095 
.789 

Table VI. Continued 

INst+ x lo3] 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 - 

0.060 
.126 
.558 
.144 
.189 
.296 
.257 
.351 
,546 

,309 
.256 

.349 
,283 
.234 

0.045 
.115 
.450 
.028 
.055 
,086 
.091 
,124 
.181 

.146 

.098 

.070 

0.073 
.154 
.526 
.075 
.113 
.174 
.139 
.201 
.293 

.222 

.131 

.261 

.175 

.133 

0.127 
.397 

1.065 
.346 
.494 
.960 
.633 
,922 

1.648 

0.152 
,169 
.664 
.177 
.230 
.389 
.297 
.410 
,651 

0.109 
,209 
,962 
.161 
.236 
.432 
.378 
.498 
.791 

1.627 
.192 

1.437 
.375 
.333 

0.173 
.504 

1.482 
.365 
.579 

1.162 
.741 

1.105 
1.976 

1.308 
.337 

1.377 
,905 
.351 

0.155 
.461 

1.351 
.350 
,516 

1.030 
,653 

1.013 
1.781 

.768 

.892 

.939 

.976 

.665 

0.163 
.159 
.685 
,145 
.191 
,313 
.248 
.361 
.537 

0.146 
.178 
,612 
,128 
.162 
.246 
.206 
.306 
.436 

0.185 
.186 
,707 
.150 
.182 
.298 
.245 
.362 
.515 

,423 
.368 

.447 

.346 

.365 

0.077 
,172 
,179 
.234 
.334 
.246 
.503 

,308 
.282 
.250 

.520 

.372 

.489 
,360 
.380 

.358 

.482 

0.104 
.452 
,059 
.loo 
.155 
.134 
.180 
,272 

,185 
.129 

.218 

.149 

.130 

0.599 
.717 

Sharp leading edge with flow trips 

15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

0.076 
,220 
,225 
.298 
.411 
,308 
.632 

.380 

.347 

.283 

.520 

.365 

.478 

.404 

.353 

.392 

.530 

0.087 
.152 
.161 
.199 
.266 
.211 
,413 

.242 

.221 
1.96 

.393 

.275 

.375 

.285 

.282 

.307 

.389 

0.063 
,176 
.169 
.236 
,322 
.265 
.507 

0.026 
.088 
.030 
.097 
,145 
,116 
.227 

0.076 
.099 
.039 
.112 
.163 
.137 
.228 

.132 
,106 
,084 

.235 

.125 

,217 
,181 
.123 

.219 

.249 

0.188 
.442 
.521 
.725 

1.060 
.809 

1.791 

1.051 
.972 
.919 

.973 

.679 

1.051 
.943 
.595 

1.646 
.957 

0.078 
.232 
.220 
.301 
.423 
.321 
.657 

.392 

.358 
,325 

.528 

.324 

.542 

.462 

.296 

.483 

.558 

0.210 
.616 
.576 
,852 

1.326 
,863 

2.087 

1.317 
1.244 
1.173 

1.125 
.766 

1.314 
1.317 
.655 

2.138 
1.483 

0.110 
.365 
.343 
.476 
.720 
.487 

1.113 

.695 

.647 

.586 

.884 

.559 

.864 

.765 
,501 

,834 
.891 

,129 
.lo7 
,087 

.291 

.255 

.219 

.442 

.256 
,223 
.114 

1.898 
.659 
.775 

2.090 
1.088 
.772 

.429 

.362 

.238 

.213 

.175 

.lo2 

.432 

.431 
.218 
.227 
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Table VI. Concluded 

INst,= x lo3] 

Test QLS62 QLS64 QLS65 QLS66 QLS67 QLS68 QLS72 QLS73 QLS74 QLS75 QLS78 QUS58 

Blunt leading edge without flow trips 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 

- 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

25 
26 

27 
28 
29 

30 
31 

0.144 
.401 

1.294 
.299 
.419 
845 
.523 
.832 

1.426 

,793 
.940 

,818 
,794 
.849 

0.167 
.590 
,464 
.704 

1.103 
.681 

1.662 

1.074 
1.004 
.902 

1.073 
.754 

1.145 
1.144 
.628 

1.864 
1.257 

0.137 
.292 

1.221 
.182 
,296 
.613 
.455 
.669 

1.180 

1.842 
.221 

1.477 
.460 
.225 

0.157 
.455 
.465 
.622 
.938 
.629 

1.607 

.846 

.757 

.881 

2.794 
.463 

1.953 
.704 
.599 

.558 

.542 

0.212 0.168 
.659 ,431 

1.956 1.507 
.431 .279 
.698 ,416 

1.532 .851 
.829 .510 

1.389 .836 
2.590 1.408 

1.034 .810 
,744 .993 

1.317 .911 
1.232 .827 
.576 .994 

0.273 
1.140 
,194 
.252 
.409 
.335 
.532 
.831 

.677 

.641 

.722 

.532 
1.302 

0.269 0.046 
.445 .124 

1.690 .576 
.262 .065 
.380 .121 
.791 .293 
.482 ,185 
.801 .299 

1.335 .591 

.905 .816 

.972 .131 

:El 

.999 I 

0.221 0.239 
.772 .788 

2.632 2.606 
.448 .435 
.794 .729 

1.829 1.700 
.951 .888 

1.676 1.539 
3.267 2.807 

1.557 1.083 
.782 1.301 

1.790 1.428 
1.487 1.488 
.606 1.109 

Sharp leading edge with flow trips 

0.268 0.164 
1.212 .613 

.683 .443 
1.159 .666 
2.067 1.048 
1.048 .645 
3.134 1.580 

2.076 1.021 
1.960 ,945 
1.754 .835 

1.633 1.250 
.774 1.099 

1.983 1.293 
1.968 1.146 
.720 .902 

1.053 1.994 
2.324 1.198 

0.088 
.322 
.262 
.383 
.581 
.375 
.883 

.562 

.517 

.459 

.920 

.796 

.929 

.671 

.739 

.818 

.770 

0.152 0.109 
.585 .322 
.393 .271 
.621 .368 
.953 .618 
.613 .367 

1.483 1.022 

.932 .635 

.852 .618 

.755 .729 

1.308 1.882 
1.333 .282 

1.402 1.284 
1.104 .562 
1.172 .238 

2.014 .371 
1.117 .342 

0.339 
1.537 
.820 

1.367 
2.586 
1.330 
3.890 

2.680 
2.498 
2.060 

2.344 
1.087 

2.812 
2.334 

.755 

.736 
1.953 

0.288 
.629 

2.283 
.348 
.541 

1.214 
.664 

1.149 
1.968 

1.063 
1.306 

1.192 
1.160 
1.234 

0.307 0.231 
1.426 
.718 

1.269 
2.248 
1.177 
3.191 

2.189 
1.982 
1.633 

1.816 
1.965 

2.280 
2.308 
1.384 

1.298 
2.429 

.960 

.547 

.943 
1.543 
.876 

2.274 

1.490 
1.335 
1.141 

1.669 
1.861 

1.885 
1.687 
1.672 

2.547 
1.635 

0.162 
.384 

1.831 
,196 
.366 
.906 
.561 
.918 

1.782 

0.193 
.167 
.618 
.161 
.208 
,367 
.281 
.393 
.640 

1.986 .457 
.387 .475 

1.814 .544 
.782 .371 
.343 .454 

0.247 
.763 
.633 
.881 

1.627 
.855 

2.530 

1.742 
1.676 
1.584 

2.834 
.526 

2.545 
1.318 
.489 

.555 
,520 

0.079 
.225 
.218 
.304 
.424 
.305 
.657 

.400 
,371 
.340 

.608 

.407 

.565 

.432 

.338 

.317 
1.003 
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Figure 1. Concluded. 
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Figure 3. Locations of wing and elevon instrumentation. 
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Figure 3. Continued. 
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Figure 6. Boundary-layer Mach number profiles for blunt leading edge without flow trips for various wing and 
elevon angles. 
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Figure 7. Boundary-layer Mach number profiles for sharp leading edge with flow trips for various wing and 
elevon angles. 
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Figure 8. Windward-surface-pressure and heat-transfer distributions for blunt leading edge without flow trips. 
W = 2 in. 
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Figure 8. Continued. 
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Figure 10. Windward-surface pressure and heat-transfer distributions for sharp leading edge with flow trips. 
W = 2 in. 
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Figure 12. Lateral-pressure and heating-rate distributions at midcbord around elevon at  various deflection 
angles. CY = 5'; blunt leading edge without flow trips; W = 2 in. 
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Figure 14. Longitudinal maximum gap pressure and heating rates along gap length for various deflection 
angles. Q = 5'; blunt leading edge without flow trips; W = 2 in. 
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Figure 20. Lateral-pressure and heating-rate distributions at midchord around elevon for various gap widths 
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Figure 22. Longitudinal maximum gap pressure and heating rates along gap length for various deflection angles 
and edge radii. a = 5'; 6 = 10'. 
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Figure 23. Correlation of maximum gap heat-transfer rate with pressure for various gap widths. a = 5‘ 
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Figure 24. Effect of gap width on maximum gap heating rate at  x ' / L  = 0.67 
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Figure 25. Boundary-layer Mach number profiles with sharp leading edge and flow trips at a = 5' for various 
free-stream Reynolds numbers. 
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Figure 26. Longitudinal pressure and heat-transfer distributions for sharp leading edge at various Reynolds 
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Figure 30. Lateral-pressure and heating-rate distributions at midchord around elevon with differential deflection 
angles. a = 5'; 6 = 10'; W = 1 in. 
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